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A free object in quantum information theory
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Abstract

We consider three examples of affine monoids. The first stems from information theory and provides a
natural model of image distortion, as well as a higher-dimensional analogue of a binary symmetric channel.
The second, from physics, describes the process of teleporting quantum information with a given entangled
state. The third is purely a mathematical construction, the free affine monoid over the Klein four group.
We prove that all three of these objects are isomorphic.
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1 Introduction

Here are some questions one can ask about the transfer of information:

(i) Is it possible to build a device capable of interrupting any form of quantum
communication?

(ii) Is it possible to maximize the amount of information that can be transmitted
with quantum states in a fixed but unknown environment?

(iii) Binary symmetric channels are some of the most useful models of noise in part
because all of their information theoretic properties are easy to calculate. What
are their higher dimensional analogues?

(iv) If we attempt to teleport quantum information using a state that is not maximally
entangled, what happens?

(v) Is it possible to do quantum information theory using classical channels?

It turns out that the answer to all of these questions depends on a certain free object
over a finite group.
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In any collection of mathematical objects, free objects are those which satisfy
the fewest laws. For instance, if one takes the set of finite words built from symbols
in a set S, and uses concatenation to define a multiplication on it, they obtain
the free monoid over S, since any other monoid over S can be thought of as the
free monoid together with additional restrictions imposed on its multiplication.
Computer scientists call the elements of the free monoid “lists.” They are among
the most fundamental objects in computation. In particular, the free monoid over
a one element set is the set of natural numbers with addition.

This paper is about a free object whose elements are called “channels.”
From classical image distortion to quantum communication, and even recently in
steganography, it plays a very important role when studying the transfer of infor-
mation in a noisy environment.

2 Black and white

A simple way to represent a black and white image on a computer is as a set of
pixels. A pixel represents a tiny rectangular region of the original image. The center
of this rectangle is assigned a number representing its intensity or “grey level.” For
instance, black might be represented with 0, while white could be represented with
255. In general, let us assume that the intensity is represented by a number whose
binary expansion can be given in n bits.

An image becomes distorted when environmental noise flips some of the bits in
a pixel. This has the effect of altering the original intensity of a pixel. For instance,
if all the bits in a white pixel are flipped, the pixel would become black, causing the
image to appear dark in a place where it should be light. To model the distortion of
an image, we will use a channel whose input is a pixel and whose output is a pixel
that in general has been degraded in some manner.

Let us first consider the case n = 1, when the intensity is represented by a single
bit. Then there are two things that can happen to this bit:

id =

1 0

0 1

 & flip =

0 1

1 0


That is, a bit is either left alone or it is flipped. This process is probabilistic, so the
the possible forms of distortion are

(1− p) · id + p · flip

for p ∈ [0, 1]. That is, with probability p the bit is flipped, and otherwise it is left
alone. Channels of this form are called binary symmetric channels [3].

For the case of an n bit pixel, there are 2n bit flipping operations possible,
described inductively as follows:

V1 := {id, flip}

Vn+1 := {id⊗ gi : gi ∈ Vn} ∪ {flip⊗ gi : gi ∈ Vn}
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Once again, the process is probabilistic, so the possible forms of noise are

〈Vn〉 :=

{
2n∑
i=1

xigi : x ∈ ∆2n

}

where Vn := {g1, . . . , g2n} and

∆n :=

{
x ∈ [0, 1]n :

n∑
i=1

xi = 1

}
.

To measure the amount of distortion in an image caused by a form of noise f ∈ 〈Vn〉,
we calculate its capacity:

C(f) = sup
x∈∆2n

{
H(xf)−

∑
xiH(eif)

}
where eif denotes row i of the matrix f and H(x) = −

∑
xi log xi is the base two

Shannon entropy.

Theorem 2.1 The capacity of f ∈ 〈Vn〉 is

C(f) = n−H(x1, . . . , x2n)

where f =
∑
xigi.

Proof. By induction, each row in f is a permutation of the first and the first is a
permutation of (x1, . . . , x2n). Because entropy is invariant under permutations, the
mutual information, which is the expression being maximized in the definition of
capacity, reduces to

H(yf)−H(x1, . . . , x2n)
where we sup over all y ∈ ∆2n

. Since f holds the uniform distribution ⊥ ∈ ∆2n

fixed, the capacity is

H(⊥)−H(x1, . . . , x2n) = log 2n −H(x1, . . . , x2n) = n−H(x1, . . . , x2n)

which is the desired expression. 2

The channels in 〈Vn〉 provide a legitimate higher dimensional generalization of
the binary symmetric channels 〈V1〉: (i) there is a clear conceptual connection be-
tween 〈V1〉 and 〈Vn〉, (ii) the important ease of calculation for 〈V1〉 is inherited by
〈Vn〉, (iii) the class of channels is not ad-hoc i.e. it forms an affine monoid, for in-
stance. To further illustrate (iii), a channel f ∈ (2n, 2n) belongs to 〈Vn〉 iff HnfHn

is diagonal, where

H1 =
1√
2

1 1

1 −1

 , Hn+1 := H1 ⊗Hn

are the Hadamard matrices. We are not sure if this implies a special connection
between 〈Vn〉 and Hadamard codes, but are curious to find out.
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3 Teleportation

3.1 Qubit channels

The fact that a binary channel f : ∆2 → ∆2 operates on ∆2 is indicative of the
fact that only two symbols are being sent and that we have chosen a particular and
fixed way of representing these two symbols. By contrast, in the case of a quantum
channel, there are an infinite number of ways to represent bits: each basis of the
state space H2, a two dimensional complex Hilbert space, offers a different possible
representation.

Let us suppose that we choose a particular quantum representation for the clas-
sical bits ‘0’ and ‘1’, denoted by orthogonal unit vectors |0〉 and |1〉 in H2. In doing
so, we are implicitly saying that we will use a quantum system to represent a clas-
sical bit. When the system is in state |0〉, it represents the classical bit ‘0’; when
in state |1〉, it represents the classical bit ‘1’. There is a subtle but relevant caveat
here though.

Physically, states are equal “to within a phase factor.” So for example, the states
|0〉,−|0〉, i|0〉,−i|0〉, eiθ|0〉 are all equivalent in the sense that quantum mechanics
makes the same predictions about a system in any one of these states. Mathemati-
cally, though, we know that we cannot go around writing things like “|0〉 = −|0〉,”
for the simple reason that in a vector space the only such element is the zero vector
and the zero vector is not a unit vector. One way around this difficulty is to say
that a ‘state’, specified by a unit vector |ψ〉 ∈ H2, is mathematically represented by
the operator f : H2 → H2 given by

f(u) = 〈ψ|u〉 · |ψ〉

The operator f takes as input a vector u and returns as output the vector |ψ〉
multiplied by the complex number 〈ψ|u〉, which is the inner product of the vector
u and the vector |ψ〉. For this reason, the operator f is traditionally denoted
f = |ψ〉〈ψ|. Such an operator is called a pure state since it refers to a state that
the system can be in; pure states are the quantum analogues of e0 = (1, 0) and
e1 = (0, 1) in ∆2, the latter of which we think of as the classical representation of
the bits ‘0’ and ‘1’.

A classical binary channel f : ∆2 → ∆2 takes an input distribution to an output
distribution. In a similar way, a qubit channel will map input distributions to output
distributions. But what is the quantum analogue of a distribution? Let us return
to the classical case. Each distribution x ∈ ∆2 may be written

x = x0 · e0 + x1 · e1

i.e., as a convex sum of classical ‘pure’ states. The meaning of such an expression
is that the system is in state e0 with probability x0 and in state e1 with probability
x1. Thus, if a quantum system is in state |ψi〉〈ψi| with probability xi, a natural
way to represent this ‘distribution’ is given by the operator

ρ =
n∑
i=1

xi · |ψi〉〈ψi|
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where we assume
∑
xi = 1. Such an operator is called a density operator. A

density operator is also called a mixed state. The set of all density operators on H2

is denoted by Ω2. Thus, in analogy with the classical case, a qubit channel will be
a function of the form ε : Ω2 → Ω2. Specifically,

Definition 3.1 A qubit channel is a function ε : Ω2 → Ω2 that is convex linear and
completely positive 4 .

To say that ε is convex linear means that ε preserves convex sums i.e. sums of
the form x · ρ + (1 − x) · σ. Complete positivity is a condition which ensures that
the definition of a qubit channel is compatible with natural intuitions about joint
systems. Now what we want to do is get rid of the Hilbert space formulation of
qubit channels.

3.2 The Bloch representation

There is a 1-1 correspondence between density operators on a two dimensional state
space and points on the unit ball B3 = {x ∈ R3 : |x| ≤ 1}: each density operator
ρ : H2 → H2 can be written uniquely as

ρ =
1
2

(I + rxσx + ryσy + rzσz) :=
1
2

(I + r · σ)

where r = (rx, ry, rz) ∈ R3 satisfies |r| =
√
r2
x + r2

y + r2
z ≤ 1 and σ = (σx, σy, σz) is

the vector of spin operators:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1


The vector r is called the Bloch vector associated to ρ. Let us write r = [[ρ]] and
denote the bijection between Ω2 and B3 as [[·]] : Ω2 → B3. Then:

• [[I/2]] = 0
• [[xρ+ (1− x)σ]] = x[[ρ]] + (1− x)[[σ]]

where x ∈ [0, 1] and ρ, σ are density operators. Notice here that I/2 is the com-
pletely mixed state i.e. the identity divided by two, which is the quantum analogue
of the uniform distribution.

Since qubit channels map Ω2 into itself, they also have Bloch representations.
The Bloch representation of a qubit channel ε : Ω2 → Ω2 is the map fε = [[ε]] that
makes

Ω2 ε //

[[·]]

��

Ω2

[[·]]

��
B3

fε

//B3

4 Notice that such maps are implicitly trace preserving since every operator in Ω2 has trace one.
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commute. It satisfies

fε([[ρ]]) = [[ε(ρ)]].

The map fε : B3 → B3 is an affine transformation: there is a 3 × 3 real matrix M
and a vector b ∈ R3 such that fε(x) = Mx + b for all x. Notice though that there
are plenty of affine transformations that do not arise as the Bloch representation of
a qubit channel. For instance, the antipodal map a(x) = −x does not represent a
qubit channel [6] i.e. ”universal bit flipping” is physically impossible.

The following equations [6] are helpful when calculating the Bloch representa-
tions of qubit channels:

• [[I]] = I

• [[ρ 7→ I/2]] = 0
• [[f ◦ g]] = [[f ]] ◦ [[g]]
• [[pf + (1− p)g]] = p[[f ]] + (1− p)[[g]]

where f, g : Ω2 → Ω2 are qubit channels and p ∈ [0, 1]. Because of the convex linear
isomorphism between qubit channels and their Bloch representations, the Bloch
representation [[ε]] of a qubit channel ε : Ω2 → Ω2 will also be called a qubit channel.

3.3 Unitality

The classical channels f which increase entropy (H(f(x)) ≥ H(x)) are exactly the
doubly stochastic channels, i.e., those which hold the uniform distribution fixed.
Part of the rationale for studying them is that they provide conservative models
of noise when operating in an unknown environment [5]. The unital channels offer
a quantum analogue of this idea: they are the quantum channels which hold the
completely mixed state fixed, or equivalently, those which increase the von Neumann
entropy for all input states.

Because a unital qubit channel will have to map the completely mixed state I/2
to itself, its Bloch representation, being affine, will have to be linear and thus defined
by a 3 × 3 real matrix. The set of such matrices can be characterized inductively.
Let ri(θ) denote the principal rotation about the i ∈ {x, y, z} axis by an angle of θ.

Theorem 3.2 ([6]) The set of unital channels U is the smallest set of 3 × 3 real
matrices such that

• For each angle θ,

rx(θ), ry(θ), rz(θ) ∈ U ,
• If f, g ∈ U , then f ◦ g ∈ U , and
• If f, g ∈ U and p ∈ [0, 1], then pf + (1− p)g ∈ U .

A particularly important class of unital channels are the diagonal channels: the
unital channels whose matrix representations are diagonal. An elementary proof of
the following is given in [6]:
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Proposition 3.3 A diagonal matrix
λ1 0 0

0 λ2 0

0 0 λ3


is a unital qubit channel if and only if |λi| ≤ 1 for each i ∈ {1, 2, 3} and if the
following four inequalities are satisfied:

(i) 1 + λ1 + λ2 + λ3 ≥ 0

(ii) 1 + λ1 − λ2 − λ3 ≥ 0

(iii) 1− λ1 + λ2 − λ3 ≥ 0

(iv) 1− λ1 − λ2 + λ3 ≥ 0

It is difficult to overstate the importance of diagonal qubit channels. Each unital
channel f can be written in the form f = udv, where u, v ∈ SO(3) and d is a diagonal
unital channel. It turns out that the Holevo capacity of f is the same as that of
the diagonal channel d. In a related way, the scope [6] of f is also systematically
determined by a diagonal channel. This leads to a method for maximizing key
generation rates in quantum cryptography in a fixed but unknown environment [6].

3.4 The teleportation channels

Teleportation allows a sender (Alice) to transmit a qubit |Ψ〉 to a receiver (Bob) as
follows:

• At the start, Alice and Bob share a maximally entangled pair of qubits i.e. the
composite system consisting of their individual subystems is in the state

|Φ〉 =
1√
2

(|00〉+ |11〉)

• Alice interacts |Ψ〉 = α |0〉 + β |1〉 with her half of the entangled pair, and then
measures both of these qubits, obtaining one of four possible results: m = 00,
m = 01, m = 10 or m = 11.

• The state of Bob’s qubit is now determined by the result of the measurement
Alice performed in the previous step; specifically, Bob’s state is

α|0〉+ β|1〉 if m = 00

α|1〉+ β|0〉 if m = 01

α|0〉 − β|1〉 if m = 10

α|1〉 − β|0〉 if m = 11

• Alice now sends the bit string m = ij to Bob. He then applies the operator σizσ
j
x

to the qubit he holds, thereby completely recovering |Ψ〉.
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However, no known experimental method is capable of generating maximally
entangled states “on demand” – the most one can hope for currently is to generate
entangled states that are subject to imperfection. Suppose then, that instead of
Alice and Bob sharing the state 1√

2
(|00〉+ |11〉), they share the imperfect state

|Φ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉

where a, b, c, d ∈ C and |a|2 + |b|2 + |c|2 + |d|2 = 1. How does teleportation function
now? When Alice attempts to teleport a pure state to Bob, what does Bob receive
if they no longer have access to maximal entanglement?

Intuitively, there is a “noisy channel” lurking: Alice attempts to teleport the
pure state |Ψ〉 to Bob, and the state Bob receives is described by a mixed state
fΦ(|Ψ〉 〈Ψ|) that depends on the entangled state |Φ〉. There is certainly a function
fΦ that maps pure states to mixed states, but is it a trace-preserving, convex linear
completely positive map? That is, is this intuitive channel actually a channel in the
formal sense of quantum information theory?

It was shown in [4] that the process of teleporting a qubit with a given entangled
state does indeed define a qubit channel in the formal sense, so we refer to such
channels as teleportation channels. In fact, much more is true:

Theorem 3.4 The set of teleportation channels is equal to the set of diagonal chan-
nels.

Proof. From [4], if a pure state with Bloch vector (rx, ry, rz) ∈ B3 is teleported
using the state

|Φ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 ,
then the Bloch vector of the mixed state describing the state received is

fΦ(rx, ry, rz) = (λxrx, λyry, λzrz)

where

λx = ad∗ + bc∗ + b∗c+ a∗d

λy = ad∗ − bc∗ − b∗c+ a∗d

λz = aa∗ − bb∗ − cc∗ + dd∗.

This correspondence defines a convex linear function fΦ : B3 → B3 that is the
Bloch representation of a diagonal qubit channel – in particular, the form of the λi
guarantees that fΦ represents a completely positive map. Thus, each teleportation
channel is diagonal.

Conversely, each diagonal channel with entries (λx, λy, λz) is an instance of tele-
portation through the entangled state a|00〉+ b|01〉+ c|10〉+ d|11〉, where

a =
1
2

√
1 + λ1 + λ2 + λ3 +

1
2

√
1− λ1 − λ2 + λ3

b =
1
2

√
1 + λ1 − λ2 − λ3 +

1
2

√
1− λ1 + λ2 − λ3

c =
1
2

√
1 + λ1 − λ2 − λ3 −

1
2

√
1− λ1 + λ2 − λ3
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d =
1
2

√
1 + λ1 + λ2 + λ3 −

1
2

√
1− λ1 − λ2 + λ3

2

In particular, the set of teleportation channels is an affine monoid: it is closed
under composition and nondeterministic choice. For instance, teleporting through
one state and then teleporting through another is equivalent to teleporting through
a fixed third state.

4 The free affine monoid over a finite group

By an affine monoid, we mean a convex subset of a real algebra that is closed
under multiplication and contains the algebra’s multiplicative identity, though more
general definitions are possible [7]. In the category of affine monoids, the morphisms
are the convex linear maps that preserve multiplication and identity.

Definition 4.1 A free affine monoid over a finite group G is an affine monoid
〈G〉 together with a homomorphism i : G → 〈G〉 that has the following universal
property:

G
∀f //

i

  A
AA

AA
AA

AA
AA

AA
A

〈G〉

∃!f̄

OO

That is, each homomorphism f : G → A into an affine monoid A has a unique
convex linear extension to all of 〈G〉.

Free objects are unique up to isomorphism: if A and B are both free over G then
we have the following implication of commutative diagrams:

G
iB //

iA

��?
??

??
??

??
??

??
B

A

īB

OO & G
iA //

iB

��?
??

??
??

??
??

??
A

B

īA

OO =⇒ G
iA //

iA

��?
??

??
??

??
??

??
A

A

īA īB

OO

Since the identity also makes the rightmost diagram commute, and only one mor-
phism can do so, īAīB = 1A. Interchanging A and B above gives īBīA = 1B, which
means that A and B are isomorphic. Because of this uniqueness, we call any object
satisfying the universal property in Definition 4.1 the free object over G.

Proposition 4.2 An affine monoid A with a morphism iA : G → A is the free
object over a finite group G = {g1, . . . , gn} iff for each a ∈ A, there is a unique
x ∈ ∆n such that

a =
n∑
i=1

xi iA(gi).

In either case, the map iA must be injective.
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Proof. (⇒): Take an n-dimensional real vector space V with basis {ei} and using
the correspondence gi 7→ ei, first define a multiplication on {ei}, and then take its
unique extension to all of V , turning V into a real algebra. Define

〈G〉 :=

{
n∑
i=1

xiei : x ∈ ∆n

}

to be the convex closure of {ei} within V and iV : G → 〈G〉 by iV (gi) = ei. Then
(〈G〉, iV ) satisfies the desired property since iV (G) is a basis for V .

(⇐): Given a morphism f : G → B into some affine B, the conditions assumed
enable us to define a function f̄ : A→ B given by

f̄

(
n∑
i=1

xi iA(gi)

)
=

n∑
i=1

xif(gi)

Since each a ∈ A is expressible as a convex sum of the form indicated above, f̄
is defined on all elements on A; since each a ∈ A is uniquely represented by an
x ∈ ∆n, f̄ is a well-defined function. In [5], it is shown that f̄ is a convex-linear
homomorphism whenever it is actually a function.

Finally, if we have a pair (A, iA) satisfying the freeness condition, then we obtain
a commutative diagram

G
iA //

iV

  A
AA

AA
AA

AA
AA

AA
A

〈G〉

īA

OO

As we saw earlier, because both A and 〈G〉 are free, the map īA is an isomorphism.
Thus, iA is also injective, as the composition of two injective maps. 2

Corollary 4.3 The free affine monoid over a finite group exists.

Finally, we come to the case of the Klein four group i.e. the unique four element
group {e, x, y, z} in which every element is its own inverse.

Theorem 4.4 The following affine monoids are isomorphic:

(i) The classical channels 〈V2〉 generated by flip operations on two bits,

(ii) The teleportation channels,

(iii) The free affine monoid over the Klein four group.

Proof. In [5], it is shown that (i) satisfies the property

2n∑
i=1

xigi =
2n∑
i=1

yigi ⇒ (∀i)xi = yi

And since the flip operations on two bits form a copy of the Klein four group,
Prop 4.2 gives that (i) is isomorphic to (iii). In the proof of Theorem 4.3 from [1],
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it is proven that the convex closure ofI =


1 0 0

0 1 0

0 0 1

 , sx =


1 0 0

0 −1 0

0 0 −1

 , sy =


−1 0 0

0 1 0

0 0 −1

 , sz =


−1 0 0

0 −1 0

0 0 1




has the same property. But since this convex closure is the set of diagonal qubit
channels, Prop. 4.2 and Theorem 3.4 give that (ii) is also isomorphic to (iii). Since
both (i) and (ii) are free affine monoids over the Klein four group, the uniqueness
of free objects implies that they must be isomorphic! And in fact,

ϕ


x1 x2 x3 x4

x2 x1 x4 x3

x3 x4 x1 x2

x4 x3 x2 x1

 =


x1 + x2 − x3 − x4 0 0

0 x1 − x2 + x3 − x4 0

0 0 x1 − x2 − x3 + x4


is an explicit isomorphism between the two. 2

Corollary 4.5 〈Vn〉 is the free affine monoid over the involution group of order 2n.

There are extremely natural examples of monoids that arise as the convex closure
of the Klein four group, but nevertheless fail to be free. For instance, the monoid
[−1, 1]× [−1, 1] with the pointwise multiplcation it inherits from R is not free since
there are two ways to write (0, 0):

(0, 0) =
(−1, 1) + (1,−1)

2
=

(−1,−1) + (1, 1)
2

.

5 Closing

We have seen the utility of the free affine monoid over the Klein four group:

(i) It can be used to design a device capable of interrupting any form of quantum
communication, as first explained in [5];

(ii) It plays a crucial role in calculating both the Holevo capacity and the scope of
a unital channel; in the first case, one is lead to an experimentally realizable
protocol for achieving the Holevo capacity [2], while in the second we obtain a
method for maximizing key generation rates in quantum cryptography [6];

(iii) It provides a higher dimensional analogue of binary symmetric channels in which
some of the most crucial information theoretic properties are easy to calculate;

(iv) It can be understood as the process of teleportation when any state is allowed as
the source of entanglement;

(v) It offers the possibility of doing quantum information theory with classical chan-
nels, since the isomorphism from 〈V2〉 to the diagonal channels assigns the non-
trivial eigenvalues of a classical channel, and the largest of these in magnitude
determines the Holevo capacity of the assigned diagonal channel.
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But while we have established the utility of free objects in communication, what
about freeness itself? To establish the importance of freeness in communication,
we would like to begin with the universal property in the definition of “free,” and
demonstrate clearly why in some cases it yields classes of channels that are easier
to study from the point of view of calculating information theoretic quantities like
capacity. We expect that this will only be the case for certain finite groups and it
will be exciting to try and determine which ones.

As we have seen, the free affine monoid over the Klein four group has a quantum
representation as well as a stochastic representation – one in terms of stochastic
matrices with the usual operations of multiplication and convex sum. In fact, Tanner
Crowder has recently shown that the free affine monoid over any finite group has
a stochastic representation in an appropriate dimension. This is more subtle than
it may sound: the stochastic representation of the symmetric group S3 on three
letters requires the use of 5× 5 matrices [1]. This of course raises the question of a
quantum representation.

Interestingly, the set of single qubit channels contains an infinite number of copies
of the finite group A4, the alternating group on four letters, but not one of them
has a convex closure that yields the free object over A4: the reason is that there
is a copy of A4 in SO(3) whose convex closure is not free [1] and that all copies of
A4 in SO(3) are conjugate. Thus, the free affine monoid over A4 has no quantum
representation using single qubit channels. Whether the free affine monoid over a
finite group always has a quantum representation in some higher dimension is an
open question.

6 Black and gold

The first author wishes to express his gratitude to the organizers of this year’s
meeting for the invitation to speak. All three thank the members of the IP group
in DC for listening to several informal lectures on this topic.

http://neworleanscitypark.com/donate.html

Finally, congratulations to the World Champion New Orleans Saints and to the
beautiful city they represent.
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