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Abstract

We study complexity and information and introduce the idea that while complexity is relative to a given class of processes,
information is process independent: Information is complexity relative to the class of all conceivable processes. In essence, the idea
is that information is an extension of the concept ‘algorithmic complexity’ from a class of desirable and concrete processes, such
as those represented by binary decision trees, to a class more general that can only in pragmatic terms be regarded as existing in
the conception. It is then precisely the fact that information is defined relative to such a large class of processes that it becomes an
effective tool for analyzing phenomena in a wide range of disciplines.

We test these ideas on the complexity of classical states. A domain is used to specify the class of processes, and both qualitative
and quantitative notions of complexity for classical states emerge. The resulting theory is used to give new proofs of fundamental
results from classical information theory, to give a new characterization of entropy in quantum mechanics, to establish a rigorous
connection between entanglement transformation and computation, and to derive lower bounds on algorithmic complexity. All of
this is a consequence of the setting which gives rise to the fixed point theorem: The least fixed point of the copying operator above
complexity is information.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

We can think of domains [1,13] as a qualitative way of reasoning about informative objects, and measurement [5,7]
as a way of determining the amount of information in an object. But neither set of ideas attempts to answer the question
“What is information?”. In this paper, we offer one possible answer to this question which has pragmatic value and is
of interest to computer science.

Let us assume that words like ‘complexity’ and ‘information’ are just that—words—and begin talking about them
as though we knew what they meant. We might say:

• The complexity of a secret is the amount of work required to guess it.
• The complexity of a problem is the amount of work required to solve it.
• The complexity of a rocket is the amount of work required to escape gravity.
• The complexity of a probabilistic state is the amount of work required to resolve it.
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In all cases, there is a task we want to accomplish, and a way of measuring the work done by a process that actually
achieves the task; such a process belongs to a prespecified class of processes which themselves are the stuff that science
is meant to discover, study and understand. Then there are two points not to miss about complexity:

(i) It is relative to a prespecified class of processes,
(ii) The use of the word ‘required’ necessitates the minimization of quantities like work over the class of processes.

Complexity is process dependent. Now, what is information in such a setting?
Information, in seeming stark contrast to complexity, is process independent. Here is what we mean: Information is

complexity relative to the class of all conceivable processes. For instance, suppose we wish to measure the complexity
of an object x with respect to several different classes P1, . . . , Pn of processes. Then the complexity of x varies with
the notion of process: It will have complexities c1(x), . . . , cn(x), where ci is calculated with respect to the class Pi .
However, because information is complexity relative to the class of all conceivable processes, the information in an
object like x will not vary. That is what we mean when we say information is process independent: It is an element
present in all notions of complexity. So we expect

complexity! information

if only in terms of the mathematics implied by the discussion above. For example, this might allow us to prove that
the amount of work you expect to do in solving a problem always exceeds the a priori uncertainty you have about
its solution: The less you know about the solution, the more work you should expect to do. The inequality above is a
valuable pragmatic entity. It can be used for instance to derive lower bounds on algorithmic complexity, which definitely
qualifies as using information to do something ‘real’ and ‘concrete.’

To test these ideas, we study the complexity of classical states relative to a class of processes. A class of processes
will be derived from a domain (D, !) with a measurement ! that supports a new notion called orthogonality. Write
cD(x) for the complexity of a classical state x relative to (D, !). Then we will see for example that

inf
D∈"

cD = #, (1)

where # is Shannon entropy and " is the class of domains (D, !). This equation provides a setting where it is clear that
information in the sense of the discussion above is #, and that the class of all conceivable processes is ".

From the point of view of the author trying to write a brief introduction, it would be nice if that were the end of the
story, but the truth is that it is less than half of the beginning. Another limit also exists

⋂

D∈"
"D = " , (2)

where "D is a relation on classical states which means x"Dy iff for all processes p on (D, !), it takes more work
for p to resolve x than y. This is qualitative complexity, and the value of the intersection above " just happens to be a
relation called majorization. Limits (1) and (2) comprise what we call the universal limit.

Now, the universal limit is taken over the class of all domains. We only understand its true nature when we discover
that " and # can also be arrived at on a fixed domain (D, !) provided that one has the ability to copy processes.
The mathematics of copying necessitates the addition of algebraic structure ⊗ to domains (D, !) already supporting
orthogonality. It is from this setting, which also benefits from basic techniques in the study of codes, the equilibrium
state in thermodynamics, and so on, that the fixed point theorem springs forth: Just as is the case with recursive programs,
the semantics of information can also be specified by a least fixed point:

fix($) = ⊔
n!0

$n(⊥) = #,

where $ is copying and ⊥ is the complexity cD. A number of unexpected consequences emerge along the way:

• Majorization, discovered by Muirhead in 1903 [6], a relation which over the last 100 years has found impressive
applications in areas such as economics, computer science, physics and pure mathematics [2,4], is a continuous dcpo
on the set of classical states that determine complexity and information.
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• The identification of the essential mathematical structure required to execute classical information theory [14] over
the class of semantic domains. The two fundamental notions on (D, !) are

(a) Orthogonality ⊥, and
(b) Tensor ⊗ : D2 → D

The domain theoretic tensor can be mapped homomorphically onto the tensor of quantum states in such a way that
(a) implies orthogonality in Hilbert space.

• Indisputable proof of the pragmatic and theoretical relevance of continuous domains to quantum mechanics, including
but by no means restricted to:

(a) the derivation and characterization of von Neumann entropy,
(b) entanglement transformation [10],
(c) the classification theorem for ensembles [11,15], a domain theoretic result which answers a fundamental question

about quantum states originally considered by Schrödinger [12],

• the quantitative notion cD can be used to derive lower bounds on algorithmic complexity, such as searching and
sorting; the qualitative notion "D is used to establish that a well-known form of entanglement transformation in
quantum mechanics, called local operations and classical communication, can be characterized precisely as an event
which, from the perspective of a computer scientist, reduces the average case complexity of all binary decision trees.

The measurement formalism [7]—a theory about information originally formulated in the context of the semantics of
computation—extends the applicability of domains at a fundamental level: Fixed point theorems including nonmono-
tonic functions, an informatic derivative, distance from content, unified approaches to the continuous and discrete, a
first-order view of recursion % = & + % ◦ r which models iteration in its natural state. The present work adds to this
list the complexity (cD, "D) as a new technique for the analysis of informatic phenomena.

This paper is structured as follows:

1. Classical states
2. Processes from the order on a domain
3. Complexity (quantitative)
4. Complexity (qualitative)
5. The universal limit
6. Inequalities relating complexity to entropy
7. The fixed point theorem
8. Entropy in quantum mechanics
9. Entanglement and algorithmic complexity
Denouement

1. Classical states

We begin with the objects whose complexity we wish to study. These are the classical states.

Definition 1.1. The set of classical n-states is

'n :=
{
x ∈ [0, 1]n :

n∑
i=1

xi = 1
}

.

The set of monotone decreasing n-states is

(n := {x ∈ 'n : (∀i < n) xi !xi+1}

for n!2.

In 1903, Muirhead [6] discovered an important relation on classical states called majorization.
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Definition 1.2. For x, y ∈ (n, it is

x"y ≡ (∀k) skx"sky,

where

skx :=
k∑

i=1
xi

for all k ∈ {0, . . . , n}. Note that s0x = 0 for all x ∈ (n.

In the last 100 years, majorization has arisen in a number of contexts, including economics, computer science, physics
and mathematics [2,4]. It is a domain.

Theorem 1.3. ((n, ") is a continuous dcpo with least element ⊥ = (1/n, . . . , 1/n).

(i) If (xi) is an increasing sequence in (n, then

⊔
i !1

xi = lim
i→∞

xi,

where the limit is in the Euclidean topology on (n.

(ii) For all t < 1, )⊥x(t)>x, where )⊥x is the straight line path from ⊥ to x.

The proof is straightforward and given in the appendix; a separate appendix reviews basic domain theoretic ideas.
This order for us will play a dual role both as a device for understanding complexity from a relational viewpoint, and
as a general mathematical technique for proving inequalities.

Lemma 1.4. The order on (n is defined inductively by requiring the maps

• (n → [0, 1] :: x +→ x+ = x1,
• (n+1 → (n :: x +→ (x1 + x2, x3, . . . , xn+1),

monotone for all n!1.

The second mapping in the above lemma we call a projection and denote it by p : (n+1 → (n. With the benefit of
this inductive principle, we can give a new, direct proof of the following result, which is already known in the literature.
We write

〈x|y〉 :=
n∑

i=1
xi · yi

for the standard inner product on Rn.

Lemma 1.5. For x, y ∈ (n, we have x"y iff for all increasing a : {1, . . . , n} → [0,∞), 〈a|x〉!〈a|y〉.

Proof. The direction (⇐) is simple. For the other, assume the result for n!2, and let a : {1, . . . , n + 1} → [0,∞) be
increasing. Define a new increasing observable * : {1, . . . , n + 1} → [0,∞) by *i := ai − a1. Then

〈*(2 . . . n + 1)|px〉 = x1(a2 − a1) + 〈a|x〉 − a1,

where *(2 . . . n + 1) is the vector * with its first component removed, and p : (n+1 → (n is the natural projection.
Since x"y, we have px"py by Lemma 1.4; now the inductive hypothesis kicks in:

〈*(2 . . . n + 1)|px〉!〈*(2 . . . n + 1)|py〉.
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When simplified we get

〈a|x〉 − 〈a|y〉 ! (y1 − x1)(a2 − a1) ! 0,

where the inequality on the right uses that a increases and x1 "y1 (⇐ x"y). #

2. Processes from the order on a domain

In order to study processes which may result in one of several different outcomes, we have to know what ‘different’
means. This is what orthogonality does: It provides an order theoretic definition of ‘distinct.’ Let (D, !) be a continuous
dcpo with a measurement ! and least element ⊥.

Definition 2.1. Two elements x, y ∈ D are orthogonal if !(↑x ∩ ↑y) ⊆ {0}. This is written x ⊥ y.

It is tempting to define orthogonal to mean ↑ x ∩ ↑ y = ∅. This intuition stems from our familiarity with discrete
objects like finite strings. Our definition extends this idea to continuous objects like intervals as well.

Definition 2.2. By a domain (D, !), we will mean a continuous dcpo D whose measurement ! → #D satisfies !⊥ = 1
and

!
(∧

F
)

! ∑
x∈F

!x

for each finite set F ⊆ D of pairwise orthogonal elements.

By replacing ! with !/!⊥ if necessary, we can always assume !(⊥) = 1. Also, the inequality for pairwise orthogonal
sets is worth comparing to its “opposite”: That !(x 4 y)"!x + !y if x and y are consistent. The latter is what allows
one to derive metrics on ker ! [8].

Lemma 2.3. (I[0, 1], !) is a domain, where ! is the length of an interval.

The following results give techniques for proving (D, !) is a domain in the special sense of this paper. They also
provide abstract explanations for why Kraft’s inequality holds (which we will see soon).

Lemma 2.4. Let + : (D, !) → (E, !) be a monotone map with !+ = ! which preserves orthogonality. If (E, !) is
domain, then (D, !) is also a domain.

Proof. Given an orthogonal set F ⊆ D, +(F ) is orthogonal in E, so the monotonicity of + and the definition of
infimum gives

+
(∧

F
)
5 ∧

+(F )

and we get

!
(∧

F
)

= !
(
+

(∧
F

))
!!

(∧
+(F )

)
! ∑

x∈F

!(+x) = ∑
x∈F

!x,

where we use the monotonicity of ! into [0,∞)∗, the fact that (E, !) is a domain, and that !+ = !. This proves (D, !)

is also a domain in the special sense of this paper. #

But as is so often the case, a theorem raises more questions than it answers: what would possess a map + between
arbitrary continuous dcpo’s to preserve orthogonality?

Proposition 2.5. Let + : (D, !) → (E, !) be an order embedding with !+ = ! whose image is dense
in the Scott topology. If no compact element of D has measure zero, and each x ∈ E with !x > 0 has ↑↑x 6= ∅,
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then

x ⊥ y ⇒ +x ⊥ +y

for all x, y ∈ D. Thus, if (E, !) is a domain, then so is (D, !).

Proof. Let x ⊥ y. Suppose +x and +y are not orthogonal. Then there is z ∈ E with !z > 0 and +x, +y 5 z. Since
!z > 0, we have by assumption that↑↑z 6= 0, and since this set is Scott open, there is a ∈ D with +(a) ∈ ↑↑z∩Im(+) 6= ∅.
The map + is monotone and has continuous measure !+ = ! so it is Scott continuous. Then

z>+(a) = +
(⊔

↓↓a
)

= ⊔
+(↓↓a),

so for some b>a we get +x, +y 5 z 5 +(b), and since + reflects the order,

x, y 5 b>a.

But x ⊥ y so !b = 0, and since ! is a measurement, b ∈ max(D), which means b = a, and hence that a = b>a, i.e.,
a is a compact member of ker ! on D, and that is a contradiction. #

Here is an important example.

Example 2.6. Let x ∈ 'n be a classical state with all xi > 0 and "∞ the streams over the alphabet " = {1, . . . , n}.
Define ! : "∞ → [0,∞)∗ by !⊥ = 1 and !i = xi , and then extend it homomorphically by

!(s · t) = !s · !t,

where the inner dot is concatenation of finite strings. The unique Scott continuous extension, which we call !, yields a
domain (D, !).

We first embed ("∞, !) into I[0, 1]. Later the algebraic structure of I[0, 1] will provide a simpler way, but for now,
visualize an interval x ∈ I[0, 1] as a line segment partitioned into n consecutive line segments having lengths xi · !x

for 1" i"n. Let +i (x) be the ith such interval. The map + : "∞ → I[0, 1] is defined by

+(x) =
{⊥ if x = ⊥,

+i (+(s)) if x = s · i.

Notice that this is a simple extension of the map in [7], where +0 = left and +1 = right.
Having defined a monotone map + on finite strings, we take its unique Scott continuous extension, and call this +.

It is an order embedding whose image is dense in the Scott topology because all xi > 0. Now Proposition 2.5 applies.

An immediate corollary of this example is the case when x = (1/2, 1/2) ∈ '2, the binary streams with the usual
measurement: (2∞, 1/2|·|) is a domain. This is the basis for the study of binary codes. Another corollary is the vital
Kraft inequality from classical information theory.

Theorem 2.7 (Kraft). We can find a finite antichain of "∞ which has finite word lengths a1, a2, . . . , an iff
n∑

i=1

1
|"|ai

"1.

Finite antichains of finite words are sometimes also called instantaneous codes. The inequality in Kraft’s result can
be derived as follows:

Example 2.8 (The Kraft inequality). We apply the last example with

x = (1/|"|, . . . , 1/|"|) ∈ '|"|.

A finite subset of "<∞ is pairwise orthogonal iff it is an antichain. Thus, we may write

!
(∧

F
)

! ∑
x∈F

!x.
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In particular, 1 = !⊥ ! !(
∧

F), using the monotonicity of !. Notice that the bound we derive on the sum of the
measures is more precise than the one given in the Kraft inequality. We call ! the standard measurement and assume
it when writing ("∞, !), unless otherwise specified.

Finally, the order theoretic structure of a domain (D, !) gives rise to a notion of process: A set of outcomes which
are (a) different, and (b) achievable in finite time.

Definition 2.9. A process on (D, !) is a function p : {1, . . . , n} → D such that pi ⊥ pj for i 6= j and !p > 0.
P n(D) denotes the set of all such processes.

It is interesting to notice that I[0, 1], like "∞, also satisfies the converse to the Kraft inequality, i.e., the direction
we did not prove. This direction permits us to characterize the vectors representable by processes on each of these
domains.

Example 2.10 (Processes on binary streams). The function − log ! : P n(D) → (0,∞)n that takes a process
p ∈ P n(D) to the vector

− log !p = (− log !p1, . . . ,− log !pn)

produces positive vectors a = − log !p which by the orthogonality of Im(p) satisfy

n∑
i=1

1
2ai

"1.

In the case of streams, a will also be integer valued. However, using the converse to the Kraft inequality, we can say
that these vectors are exactly the image of − log !. That is, any such integer valued vector a can be represented by a
process on the domain of binary streams. For I[0, 1] we get all positive vectors obeying the Kraft inequality.

We will now use this notion of process to define the complexity of classical states. Two notions arise: A quantitative
measure, called hD , and a qualitative measure, "D , which takes the form of a relation on classical states (n.

3. Complexity (quantitative)

By considering processes on (2∞, !), it is clear that the expected work done by an algorithm which takes one of n
different computational paths p : {1, . . . , n} → D is 〈− log !p|x〉. Thus, the complexity of a state c : 'n → [0,∞)∗

is

c(x) := inf{〈− log !p|x〉 : p ∈ P n(D)}.

The function sort+ reorders the components of a vector so that they increase; its dual sort− reorders them so that they
decrease. We now show that c is essentially a map defined on monotone states in disguise. Here is the crucial result:

Lemma 3.1. If a : {1, . . . , n} → [0,∞) is increasing, then

〈a|x〉!〈a|sort−(x)〉

for all x ∈ 'n.

Proof. By induction, for x ∈ 'n+1 with n!1, we have

sort−(px)"p(sort−(x)),

where p is the projection from the discussion on majorization ((n, ").



K. Martin / Theoretical Computer Science 350 (2006) 292 –324 299

Assume the claim for n!1. To prove it for n + 1, let a : {1, . . . , n + 1} → [0,∞) be increasing. Again we define
the increasing * : {1, . . . , n + 1} → [0,∞) as before and for ease of exposition set b := *(2 . . . n + 1). Recall from
the proof of Lemma 1.5 that

〈b|p(x)〉 = x1(a2 − a1) + 〈a|x〉 − a1.

By the inductive hypothesis,

〈b|p(x)〉!〈b|sort−(px)〉

and since sort−(px)"p(sort− x),

〈b|sort−(px)〉!〈b|p(sort− x)〉

using the monotonicity of 〈b|·〉 : (n → [0,∞)∗ from Lemma 1.5. Putting these two together and rearranging terms
gives

〈a|sort−(x)〉 − 〈a|x〉 " x1(a2 − a1)− (sort− x)1(a2 − a1) " 0,

done. #

And now the fun starts: The complexity of a classical state does not depend on the order of the probabilities
within it.

Proposition 3.2. For all x ∈ 'n,

c(x) = inf{〈sort+(− log !p)|sort−(x)〉 : p ∈ P n(D)}.

In particular, the function c is symmetric.

Proof. Throughout this one, we fix x ∈ 'n and denote the infimum on the right by h. For c(x)!h, let p ∈ P n(D).

Then

〈− log !p|x〉 = 〈sort+(− log !p)|x · #〉 (for some permutation # ∈ S(n))

! 〈sort+(− log !p)|sort−(x)〉 (Lemma 3.1)

! h.

Since c(x) is the infimum of such terms, c(x)!h.

For h!c(x), let p ∈ P n(D). Let # ∈ S(n) be a permutation with x · # = sort−(x). By rearranging p, there is a
process q ∈ P n(D) such that (− log !q) · # = sort+(− log !p). We have

〈sort+(− log !p)|sort−(x)〉 = 〈sort+(− log !p) · #−1|sort−(x) · #−1〉
= 〈− log !q|x〉
! c(x).

Since h is the infimum of such terms, h!c(x). #

As a consequence, we restrict our attention to monotone decreasing states (n.

Definition 3.3. The expectation of a process p ∈ P n(D) is 〈p〉 : (n → [0,∞)∗ given by

〈p〉x = 〈sort+(− log !p)|x〉.

If the outcomes of process p are distributed as x ∈ (n, then the work we expect p will do when taking one such
computational path is 〈p〉x. And finally, complexity.
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Definition 3.4. The complexity of a state h : (n → [0,∞)∗ is

h(x) = inf{〈p〉x : p ∈ P n(D)}.

Thus, the relation of h to c is that the diagram

(n h! [0,∞)

"
"

"
"

c

#

'n

sort−
$

commutes: (∀x ∈ 'n) c(x) = h(sort−(x)). The Shannon entropy # : 'n → [0,∞) is

#x := −
n∑

i=1
xi log xi.

We also view it as a map on (n, and as a map on all monotone states. Its type will be clear from the context.

Lemma 3.5. If a : {1, . . . , n} → (0,∞) is a vector, there is a unique classical state y ∈ 'n such that

〈a|y〉 − #y = inf{〈a|x〉 − #x : x ∈ 'n}.

The state y is given pointwise by yi = 2−ai /Za and satisfies

〈a|y〉 − #y = − log Za,

where

Za :=
n∑

i=1

1
2ai

.

In addition, if a is increasing, then y ∈ (n.

Proof. First, arithmetic gives 〈a|y〉 − #y = − log Za. Next, it is the minimum value of f (x) = 〈a|x〉 − #x on 'n:

f (x) = f (x) + log Za− log Za

= − ∑
xi>0

log
(

yi

xi

)
xi − log Za

! ∑
xi>0

(
1− yi

xi

)
xi − log Za (using ln x"x − 1 for x > 0)

=
(

1− ∑
xi>0

yi

)

− log Za

! − log Za.

Finally, y is the unique state where f takes its minimum: If f (x) = − log Za, then the string of inequalities above
implies

− ∑
xi>0

log
(

yi

xi

)
xi = ∑

xi>0

(
1− yi

xi

)
xi

which can be rewritten as
∑

xi>0
(ti − 1− log ti )xi = 0,
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where ti = yi/xi . Because ln x"x − 1 for x > 0, this is a sum of nonnegative terms which results in zero. Then each
term must be zero, so ti = 1 which means xi = yi whenever xi > 0. However, since

∑
yi = 1 and each yi > 0, we

must have xi > 0 for all i ∈ {1, . . . , n}. Then x = y. #

In thermodynamics, the last lemma gives the existence and uniqueness of the equilibrium state associated to (energy)
observable a.

Proposition 3.6. If (D, !) is a domain, then the complexity hD : ((n, ") → [0,∞)∗ is Scott continuous and satisfies
hD !# where # is entropy.

Proof. First we prove h is Scott continuous. By Lemma 1.5, 〈p〉 : (n → [0,∞)∗ is monotone when p ∈ P n(D),
so h is monotone as the sup of such maps. For its continuity, if h(x) < *, then 〈p〉x < * for some p ∈ P n(D). But
〈p〉 ◦ )⊥x : [0, 1] → [0,∞) is Euclidean continuous, so

(∃& > 0)(∀t ∈ (1− &, 1]) (〈p〉 ◦ )⊥x)(t) < *.

Thus, h(a)"〈p〉a < *, where a = )⊥x(t) for some t < 1. But a>x. By the monotonicity of h, x ∈ ↑↑a ⊆ h−1[0, *),
so h is Scott continuous.

For h!#, given a process p ∈ P n(D), the vector

a = sort+(− log !p) : {1, . . . , n} → (0,∞)

satisfies

Za =
n∑

i=1
!pi "!

(∧
Im(p)

)
"!⊥ = 1,

where we appeal to the pairwise orthogonality of Im(p). Then by Lemma 3.5, using − log Z(a)!0,

〈p〉x = 〈a|x〉!#x

and since hD(x) is the infimum of such terms, hD(x)!#x. Thus, hD !#. #

We have now proven the following: The amount of work we expect to do when solving a problem exceeds our a
priori uncertainty about the solution. That is, the less you know about the solution, the more work you should expect
to do. We mean this literally as the following example shows.

Example 3.7. Lower bounds on algorithmic complexity. Consider the problem of sorting lists of n objects by
comparison. Any algorithm for achieving this has a binary decision tree. For lists with three elements a1, a2 and a3,
it is

where a move left corresponds to a decision " , while a move right corresponds to a decision >. The leaves of this
tree, which are labelled with lists representing potential outcomes of the algorithm, form an antichain of n!-many finite
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words in 2∞ using the correspondence " +→ 0 and > +→ 1. This defines a process p : {1, . . . , n!} → 2∞. If our
knowledge about the answer is x ∈ (n!, then

avg. comparisons = 〈− log !p|x〉
! 〈p〉(sort− x)

! h(sort− x)

! #x.

Assuming complete uncertainty about the answer, x = ⊥, we get

avg. comparisons!#⊥ = log n! ≈ n log n.

In addition, we can derive an entirely objective conclusion. In the worst case, we must do at least

max(− log !p)!〈p〉⊥!#⊥ ≈ n log n

comparisons. Thus, sorting by comparisons is in general at least O(n log n). A similar analysis shows that searching
by comparison is at least O(log n).

Notice what this last example shows: domain theoretic structure provides a new way to count the number of leaves
in a binary tree.

Different orders can give rise to different complexity classes, for the simple reason that changing the order changes
the notion of process. An example of this is the subdomain (L, !) ⊆ (2∞, !) that models linear search (its complexity
is given in Example 6.1).

4. Complexity (qualitative)

Each domain (D, !), because it implicitly defines a notion of process, provides an intuitive notion of what it means
for one classical state to be more complex than another: x is more complex than y iff for all processes p ∈ P n(D), the
work that p does in resolving x exceeds the work it does in resolving y. This is qualitative complexity.

Definition 4.1. For x, y ∈ (n, the relation "D is

x"Dy ≡ (∀p ∈ P n(D)) 〈p〉x!〈p〉y.

Only one thing is clear about "D: The qualitative analogue of Proposition 3.6.

Lemma 4.2. For each domain (D, !), " ⊆ "D.

Proof. Let x"y. Given a process p ∈ P n(D), 〈p〉 : (n → [0,∞) is the expectation of the increasing vector
sort+(− log !p), so by Lemma 1.5 we have 〈p〉x!〈p〉y, which is x"Dy. #

The calculation of "D requires knowing more about the structure of D. We consider domains whose orders allow
for the simultaneous description of orthogonality and composition. In the simplest of terms: These domains allow us
to say what different outcomes are, and they allow us to form composite outcomes from pairs of outcomes.

Definition 4.3. A domain (D, !) is symbolic when it has an associative operation ⊗ : D2 → D such that

!(x ⊗ y) = !x · !y

and

x ⊥ u or (x = u & y ⊥ v) ⇒ x ⊗ y ⊥ u⊗ v

for all x, y, u, v ∈ D.
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The qualitative axiom in the definition of symbolic domain, which relates ⊥ and ⊗, is a more general form of the
relation that holds between orthogonality and tensors in a Hilbert space, i.e.,

x ⊥ u or y ⊥ v ⇒ x ⊗ y ⊥ u⊗ v.

Later we will see how our notion maps homomorphically onto the Hilbert space idea. The reason our notion is more
general in spirit (we require x = u) is so that we can incorporate discrete cases like binary strings. Similarly, the
quantitative axiom, which relates ⊗ and !, is a domain theoretic version of the relation between tensors and the inner
product on a Hilbert space.

Example 4.4. The product on I[0, 1] is

[a, b]⊗ [y1, y2] = [a + y1 · (b − a), a + y2 · (b − a)].
It has many neat properties. For example,

⊥⊗ x = x ⊗⊥ = x,

so it is a monoid and the measurement ! is now a homomorphism! You can also calculate zeroes of real-valued functions
by repeatedly multiplying left(⊥) = [0, 1/2] and right(⊥) = [1/2, 1], i.e., the bisection method. Try it, its fun.

We can tensor processes too.

Lemma 4.5. If p : {1, . . . , n} → D and q : {1, . . . , m} → D are processes, then p ⊗ q : {1, . . . , nm} → D is a
process.

If p and q are processes, then p ⊗ q is the process whose possible actions are pi ⊗ qj , where pi is any possible
action of p, and qj is any possible action of q. The exact indices assigned to these composite actions for our purposes
is immaterial.

Lemma 4.6. For x, y ∈ (n, we have x"y if and only if
n∑

i=1
kixi !

n∑
i=1

kiyi

for every increasing sequence (ki)
n
i=1 of positive integers.

Proof. The direction (⇒) is obvious (Lemma 1.5). What makes (⇐) counterintuitive is its use of positive integers.
We need to prove sj x"sj y for each 1"j "n. For fixed j, let k : {1, . . . , n} → N \ {0} be the vector defined by

ki :=
{

1 if i"j,

2 otherwise.

Then k is an increasing sequence of positive integers so

j∑
i=1

xi + 2
n∑

i=j+1
xi !

j∑
i=1

yi + 2
n∑

i=j+1
yi.

This can be written
(

j∑
i=1

xi +
n∑

i=j+1
xi

)

+
n∑

i=j+1
xi !

(
j∑

i=1
yi +

n∑
i=j+1

yi

)

+
n∑

i=j+1
yi

and since the terms grouped in parentheses sum to one, they cancel out leaving
n∑

i=j+1
xi !

n∑
i=j+1

yi

which is exactly sj x"sj y. #
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Theorem 4.7. Let (D,⊗, !) be a symbolic domain. If there is a binary process p : {1, 2} → D, then "D = " .

Proof. By replacing p with the binary process q defined by q1 = p1 ⊗ p2 and q2 := p2 ⊗ p1 if necessary, we can
assume !p1 = !p2 > 0. First we prove "D ⊆ " .

Suppose we have x, y ∈ (n with x"Dy. To show x"y, we use Lemma 4.6. To this end, let k be an increasing
vector of positive integers. First we construct n orthogonal elements with the same measure: Let a : {1, . . . , n} → D

be the process defined by restricting
⊗n

i=1 p to {1, . . . , n}; we have !ai = (!p1)
n for all 1" i"n.

Now we exponentiate each ai exactly ki many times; formally, define a process b : {1, . . . , n} → D given by

bi :=
(

ki⊗
1

ai

)

⊗
(

kn⊗
ki+1

⊥
)

.

That is, each bi is the product of kn different elements: The first ki !1 elements are copies of ai , the others are copies
of ⊥. It is important to check that b is in fact a process.

First, because ⊗ is associative, we may write each bi in the form

bi := ai ⊗ (. . .),

where crucially this ‘picture’ requires each ki !1. Now suppose i 6= j . Then because ai ⊥ aj , the qualitative property
of ⊗ gives bi ⊥ bj . Thus, the image of b is a pairwise orthogonal set. Calculating !b > 0 benefits from !⊥ = 1:

!bi = (!ai)
ki · 1 = (!p1)

nki > 0.

Then b is a process. Since x"Dy, the definition of "D implies 〈b〉x!〈b〉y.

Recall that 〈b〉x = 〈sort+(− log !b)|x〉. But the vector − log !b is already sorted into increasing order: Because the
ki’s increase, the vector !b decreases (using !p1 "!⊥ = 1). Thus the vector − log !b increases and we get

(− log !p1)n
n∑

i=1
kixi = 〈b〉x!〈b〉y = (− log !p1)n

n∑
i=1

kiyi .

Notice that !p1 < 1 (or else strict monotonicity of ! gives p1 = ⊥ which is impossible since p1 ⊥ p2 and !p2 > 0).
Thus, − log !p1 > 0, so we may divide through by it to get

n∑
i=1

kixi !
n∑

i=1
kiyi .

Since this holds for any increasing sequence of positive integers (ki), Lemma 4.6 implies x"y. Putting this together
with " ⊆ "D from Lemma 4.2 gives " = "D. #

5. The universal limit

We now prove that " and # are two sides of the same coin: The former is a qualitative limit; the latter is a quantitative
limit. Each is taken over the class of domains.

Theorem 5.1. Let # : (n → [0,∞)∗ denote Shannon entropy and " denote the class of domains. Then

inf
D∈"

hD = #

and
⋂

D∈"
"D = " ,

where the relation " on (n is majorization.
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Proof. The inequality inf hD !# follows immediately from Proposition 3.6. The proof of the other inequality is all
domain theory. Consider (D, !) = (I[0, 1], !). By Proposition 3.6, its complexity h is Scott continuous. Further, for
any state x ∈ (n with xi > 0 for all i,

pi := [si−1x, six]

defines a process p ∈ P n(I[0, 1]) such that

〈p〉x = #x,

which means h(x) = #x on a basis of the domain ((n, "). Now given any x ∈ (n, let (yn) ∈ (n be the increasing
sequence yn = )⊥x(t − 1/n). Each term of this sequence is a positive vector. We have

h(x) = ⊔
n!1

h(yn) = ⊔
n!1

#(yn) = lim
n→∞ #(yn) = #

(
lim

n→∞ yn

)
= #x

using only the Scott continuity of h, the Euclidean continuity of #, the fact that the two maps agree on positive states,
and the characterization of suprema in ((n, "). This proves hD = # in all dimensions when D = I[0, 1] which gives
# = hD ! inf hD.

By Lemma 4.2, the intersection contains " . If we take D = "∞, the last theorem gives "D = " , which implies
the intersection is contained in " . #

Corollary 5.2. Shannon entropy # : ((n, ") → [0,∞)∗ is Scott continuous.

Proof. In the last result we saw that entropy is an example of complexity, and hence Scott continuous by
Proposition 3.6. #

Thus, by Theorem 5.1, the optimum value of (hD, "D) is (#, "). But when is (hD, "D) close to (#, ")? Though
it is subtle, if we look at the case when "D achieves " in the proof of Theorem 4.7, we see that a strongly contributing
factor is the ability to copy processes—we made use of this idea when we formed the process

⊗n
i=1 p. We will now

see that the ability to copy on a given domain also guarantees that h is close to #.

6. Inequalities relating complexity to entropy

We begin with some examples of complexity. It is convenient on a given domain (D, !) to denote the complexity in
dimension n by hn : (n → [0,∞).

Example 6.1. Examples of h.

(i) On the lazy naturals (L, !) ⊆ (2∞, !), where the L is for linear,

hn(x) = x1 + 2x2 + · · · + (n− 1)xn−1 + (n− 1)xn

which is the average number of comparisons required to find an object among n using linear search.
(ii) On the domain of binary streams (2∞, !),

h2(x) ≡ 1,

h3(x) = x1 + 2x2 + 2x3 = 2− x1,

h4(x) = min{2, x1 + 2x2 + 3x3 + 3x4} = min{2, 3− 2x1 − x2}.

In general, hn(x) is the average word length of an optimal code for transmitting n symbols distributed according
to x.
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(iii) On (I[0, 1], !),

hn(x) = −
n∑

i=1
xi log xi,

which is the entropy #.

These examples do little to help us understand the relation of h to #. What we need is some math. For each integer
k!2, let

c(k) := inf{max(− log !p) : p ∈ P k(D)}.
Intuitively, over the class P k(D) of algorithms with k outputs, c(k) is the worst case complexity of the algorithm whose
worst case complexity is least.

Theorem 6.2. Let (D,⊗, !) be a symbolic domain with a process p ∈ P k(D). Then

#"h" c(k)

log k
· (log k + #),

where h and # can be taken in any dimension.

Proof. Let ("∞, ,) be the domain of streams over an alphabet " = {a1, . . . , ak} with k letters and standard
measurement ,ai = 1/k. Define a partial map + : "∞ ⇀ D by +(ai) = pi and then extend it homomorphically. Let
x ∈ (n with all xi > 0. Let mi be the positive integer such that

− log xi

log k
"mi < 1− log xi

log k
.

Then (mi)
n
i=1 is an increasing sequence of positive integers. Because

n∑
i=1

1
kmi

"1,

the converse of the Kraft inequality applied to ("∞, ,) gives a process q ∈ P n("∞) such that |qi | = mi . Now we use
+ to map q into a process r ∈ P n(D) given by

ri := +(qi)⊗
(

mn⊗
mi+1

⊥
)

.

As before, we send each qi to the tensor of mn many elements; the first mi are +(qi), the other mn − mi are copies
of ⊥. The fact that r is a process follows from the fact that q is a process and that each ri is a product of exactly mn

elements. By Lemma 3.1,

h(x)"〈r〉x"〈sort+(− log !r)|x · #〉
for any permutation # ∈ S(n). Thus, for an appropriate choice of #, we get

h(x)"〈r〉x" −
n∑

i=1
xi · log !ri

and since each !ri is a product of mi many components of the vector !p,

!ri ! min(!p)mi

so

hx"〈r〉x"(− log min(!p)) ·
(

1 + #x

log k

)
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and hence

h" c(k)

log k
(log k + #)

on a basis of the domain ((n, "). But both of these functions are Scott continuous, so the inequality holds on all
of (n. #

Since any symbolic domain with a process must have a binary process:

Corollary 6.3. Let (D,⊗, !) be a symbolic domain with a binary process p ∈ P 2(D). Then #"h"c · (1 + #) where
the constant c!1 depends only on (D, !).

Thus, the mere existence of a process on a symbolic domain (D, !) means not only that "D = " but also that h and
# are of the same order. Without the ability to copy, h and # can be very different: Searching costs O(n) on L, so hL

and # are not of the same order. However, the distinction ‘of the same order’ is not precise enough for what we have
in mind.

Definition 6.4. If (D,⊗, !) is a symbolic domain, then the integer

inf{k!2 : c(k) = log k}

is called the algebraic index of (D, !), assuming that it exists.

Notice that we always have c(k)! log k by orthogonality, so to calculate the algebraic index we need only prove
c(k)" log k.

Corollary 6.5. If (D,⊗, !) is a symbolic domain with algebraic index k!2, then

#"h" log k + #,

where h and # can be taken in any dimension.

For instance, the algebraic index of I[0, 1] is 2. But why should such an integer exist? To take a closer look, recall
that a process p for solving a problem always does an amount of work which exceeds our ignorance about its solution:
〈p〉!#. Thus, the amount of work not due to our a priori uncertainty about the solution is 〈p〉−#. When is this amount
minimized? The answer is the equilibrium state y ∈ (n from thermodynamics: The unique state y such that

〈p〉y − #y = inf{〈p〉x − #x : x ∈ (n},

which is found to be

y := sort−(!p)

Z(− log !p)

by applying Lemma 3.5 to the positive increasing vector − log !p. Thus, the answer to our question implicitly defines
a function g : P n(D) → (n for each n that is called the Gibbs map.

Definition 6.6. The map g : P n(D) → (n is defined by

g(p) := sort−(!p)

Z(p)
,

where Z(p) := ∑n
i=1 !pi is called the partition function. We call g(p) the Gibbs state associated with process p.
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Equilibrium can be expressed as follows: Given w(·) = 〈·〉 + log Z(·) and the entropy # : ( → [0,∞), there is a
unique g : P(D) → ( which makes

P(D)
'! P(D)× P(D)

w × g! [( → [0,∞)]× (

(

g

%

#
! [0,∞)

ev

%

commute. It is the Gibbs map.

Definition 6.7. The optimal processes on (D, !) are

Sn(D) := {p ∈ P n(D) : Zp = 1}.

Notice that any p ∈ P n(D) has Z(p)"1, by the pairwise orthogonality of Im(p). For p ∈ Sn(D), we have∧
Im(p) = ⊥. Another sense in which p is optimal is that it resolves the state x = g(p) faster than any other

process q:

〈q〉x!hx!#x = 〈p〉x.

It seems to the author that optimal codes (from classical information theory) also yield optimal processes in the sense
defined above.

Mathematically, the Gibbs map gives us a natural way to formalize the idea that a classical state can be represented
by a process. For instance, suppose that a basis of ((n, ") can be represented by a subset of Sn(D), as is the case with
the interval domain.

Proposition 6.8. Let (D, !) be any domain. If the image of the Gibbs map g restricted to Sn(D) is a basis for the
domain (n, then h = # in dimension n.

Proof. For each p ∈ Sn(D),

〈p〉g(p)− #g(p) = − log Z(p) = 0

which means that h = # on the image of g|Sn(D). But this image is a basis for the domain (n and both maps are Scott
continuous; hence h = #. #

Continuing, the above result has a generalization which is subtle but significant for the work at hand: If the image of
the Gibbs map g is a basis for (n, then it must contain ⊥ ∈ (n. The reason is that any basis for a domain must contain
the least element. Even with this far weaker hypothesis, we can prove the following:

Proposition 6.9. Let (D,⊗, !) be a symbolic domain. If the image of the Gibbs map g : Sk(D) → (k contains⊥ ∈ (k

for some k, then

#"h" log k + #,

where h and # can be taken in any dimension.

Proof. If g(p) = ⊥ with p ∈ Sk(D), then !p = ⊥, which means c(k) = log k. Then the algebraic index m exists and
we get

#"h" log m + #" log k + #

since m is the least integer for which c(m) = log m. #
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This result identifies a simple and concrete way to calculate the algebraic index of a symbolic domain: Find the least
dimension where ⊥ can be represented by an optimal process on D. Notice too that if the algebraic index of D is k,
then D basically contains an algebraic copy of the free monoid on k letters. This copy can be made order theoretic by
imposing x 5 x ⊗ y.

7. The fixed point theorem

Let ( be the set of all monotone decreasing states and P(D) be the set of all processes on (D, !). If we now regard
the Gibbs map as a function g : P(D) → ( we notice that

g(p ⊗ q) = g(p)⊗ g(q) and Z(p ⊗ q) = Zp · Zq,

where ⊗ : (× ( → ( is defined by

x ⊗ y := sort−(x1y, . . . , xny).

That is, given x ∈ (n and y ∈ (m, we multiply any xi by any yj and use these nm different products to build a vector
in (nm. Thus, the product ⊗ on P(D) causes a tensor ⊗ on (.

Definition 7.1. Let X be a set with a tensor ⊗. The copying operator ! : X → X is

!x := x ⊗ x

for all x ∈ X.

What is copying?

Example 7.2 (Ensembles of molecules). As is well known, the states of a molecule are represented by a vector
p : {1, . . . , n} → D, usually using letters in an alphabet. Thus, p is a process in the formal sense. Each possible
state pi of the molecule has a probability xi associated to it. Thus, to p ∈ P n(D) there is x ∈ (n.

Now consider two identical molecules as a single system. This defines a new process !p := p ⊗ p whose possible
states are pi ⊗ pj . In addition, we usually assume the molecules interact lightly, which means the distribution for the
state of the joint system is !x := x ⊗ x (independence). If we consider several such molecules, say n, then

n⊗
i=1

p

describes the state of a gas. Its distribution is xn.

If after this example it seems that x2 = 2x, it is true:

Example 7.3. Let f, g : ( → ( be functions with informatic derivatives at p ∈ (. Then

d(f ⊗ g)#(p) = df#(p) + dg#(p).

In particular, for f = g = id(, we get d(!)# = 2.

Let us take a different viewpoint now. Suppose we want to solve a problem, like sorting or searching a list, and for
this we have a process p : {1, . . . , n} → D. No matter what our a priori knowledge x ∈ (n is about the solution, in
the worst case x = ⊥, we will have to do an amount of work 〈p〉x!h(x) where h is the complexity from (D, !). But
suppose we try to solve our problem as follows:

• Copy the process p to obtain a new process !p, this results in two uninteracting copies of p.
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• When p wants to solve a problem, we solve it “indirectly” by executing !p. This results in an outcome pi ⊗ pj .

• We extract the answer to p from the outcome provided by !p.

It is not at all clear that such ideas make computational sense. We need an example.

Example 7.4. Consider the binary process on I[0, 1],

p = ([0, 1/2], [1/2, 1]).

It arises when we want to compute a zero of a real-valued function f : [0, 1] → R using the bisection method. Now
consider

!p := ([0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1]).

To solve the problem p, we form !p, execute it, and then using its outcome pi ⊗ pj , extract the solution to p. Notice
that !p produces an outcome by executing p twice.

The next step is most important. You will notice that various costs arise when we want to solve p using !p. For
example, it takes work to extract the answer to p from !p. These costs, and any others you can imagine, we want to
ignore. This is entirely unrealistic and that is the point: Under wholeheartedly ridiculous assumptions about how the
world works, we will see that entropy is still a lower bound on the amount of work required to solve a problem. This is
another illustration of the idea we mentioned in the beginning: ‘information’ is complexity relative to the class of all
conceivable processes.

In general now, if our a priori knowledge about the result of p is x, then our a priori knowledge about the result of
!p is !x. Thus, the fastest that !p can execute is h(!x). Since !p produces two outcomes of p, the fastest that !p can
indirectly solve the problem p is about h(!x)/2. If we now repeat this copying process forever, successively making

use of processes p2n
, we find that the amount of work h(x2n

)/2n required to solve the original problem of p always
exceeds #x. And in the limit,

lim
n→∞

h(x2n
)

2n
= #x.

Thus, even assuming this unrealistic appeal to the conception, we still have to do an amount of work no less than #x:
Another example of the process independent nature of information.

Of course, this is nothing more than a computational interpretation of Shannon’s idea from coding theory. The
advantage of this new interpretation, though, is two fold: First, the author understands this one; and second, one
realizes that entropy is an ideal object. The situation between complexity and entropy is no different than the way we
calculate

√
2: Beginning with a rational initial value x0, we successively iterate a map If which produces a sequence

In
f (x0) of constructively generated rationals with

√
2 = limn→∞ In

f (x0). In our case, the role of the initial guess x0 is

played by the complexity h, the limit
√

2 is replaced with entropy #, and the analogue of the Newton iterate If is the
copying operator $ given in the following theorem.

Theorem 7.5. Let (D,⊗, !) be a symbolic domain whose algebraic index is k!2. Then the least fixed point of the
Scott continuous operator

$ : [( → [0,∞)∗] → [( → [0,∞)∗],

$(f ) = f !
2

,

on the set ↑ (h + log k) is

fix($) = ⊔
n!0

$n(h + log k) = #,

where h : ( → [0,∞) is the complexity on all states.
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Proof. Let k!2 satisfy #"h" log k + #. First, we prove that h + log k 5 $(h + log k). Note that

#" h!
2

" log k

2
+ #

using # = #!/2. Then
(

h + log k

2

)
−

(
h!
2

)
!

(
# + log k

2

)
−

(
log k

2
+ #

)
= 0

and this is exactly the statement that h + log k 5 $(h + log k). Thus, the least fixed point of $ on ↑ (h + log k) is

fix($) = ⊔
n!0

$n(h + log k).

Since # = $(#) ∈↑(h + log k), we must have fix($) 5 #. However, we also have

# + log k

2n
5 $n(h + log k) 5 fix($)

and since this holds for all n, we get # 5 fix($). This proves fix($) = #. #

There are a few interesting points to be made about this result. First, $ has many fixed points above #: Consider c ·#
for c < 1. Thus, $ cannot be a contraction on any subset containing ↑h. But $ also has fixed points below #: The map
f (x) = log dim(x) = #⊥dim(x) is one such example. This iterative process is very sensitive to where one begins, so
much so that a far reaching truth must be near: Information is the least fixed point of the copying operator that is above
complexity.

Example 7.6 (Shannon’s first theorem). This follows from the fixed point theorem. Let D = "∞ be the domain of
streams over the alphabet " = {0, . . . , k − 1} whose natural measurement is !s = 1/k|s|. Then the algebraic index of
D is k so

⊔
n!0

$n(h + log k) = #.

Now, it is a general domain theoretic fact, though admittedly obscure, that because # is the least fixed point of $ on
↑ (h + log k) we must have

⊔
n!0

$n(f ) = fix($)

for any f with h + log k 5 f 5 fix($), even though the sequence ($n(f )) need not be increasing. This is the
attractive nature of least fixed points discussed in [9]. If we take f to be the complexity h, we get

⊔
n!0

$n(h) = #.

Recalling that in the case of (D, !) = ("∞, !), h(x) is the minimum achievable average word length for transmitting
n symbols distributed as x, we have Shannon’s first noiseless coding theorem. It is true for any symbolic domain with
algebraic index k.

In the proof of the fixed point theorem, we can regard ( a continuous dcpo by viewing it as a disjoint union of
domains. But we do not have to, we could just view it as a set. And if we do, the function space is still a dcpo, the
theorem remains valid, and we obtain a new characterization of entropy:

Corollary 7.7. Let (D,⊗, !) be a symbolic domain with algebraic index k!2. Then there is a greatest function
f : ( → [0,∞) which satisfies h!f and f (x ⊗ x)!f (x) + f (x). It is Shannon entropy.

The question then, “Does h approximate #, or is it # which approximates h” is capable of providing one with hours
of entertainment.
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8. Entropy in quantum mechanics

Let H be a one-dimensional complex Hilbert space with inner product 〈·|·〉. The inner product in quantum mechanics
is taken as conjugate linear in its first argument. The tendency in mathematical settings is conjugate linearity in its
second argument. This is worth keeping in mind; otherwise, standard results from functional analysis have a way of
appearing slightly off.

The Cartesian product (or direct sum) of n copies of H is written Hn. It will model the state space of an
n-dimensional quantum system as follows. Each unit vector |-〉 ∈ Hn defines a pure state

|-〉〈-| : Hn → Hn

which is the operator that takes vector |+〉 to a scalar multiple of |-〉, given by |-〉 · 〈-|+〉. Two normalized states |-〉
and |+〉 describe the same pure state iff |-〉 = ei.|+〉 for some . ∈ R, i.e., they are equal to within a phase factor.

To know the state of a quantum system is to be in possession of a pure state describing it. Otherwise, when we do not
know the state of the system exactly, our knowledge is represented by a mixed state /: A linear, self-adjoint, positive
/ : Hn → Hn with tr(/) = 1 called a density operator. Like any self-adjoint operator, a density operator has a spectral
decomposition into a sum of pure states

/ =
n∑

i=1
,i |-i〉〈-i |,

where the unit vectors {|-i〉} are pairwise orthogonal, and the ,i are real numbers. However, by positivity, each ,i !0,
while tr(/) = 1 gives

n∑
i=1

,i = 1.

Thus, a natural map taking density operators to monotone decreasing classical states exists, called the spectrum.

Definition 8.1. Let 0n be the set of density operators on Hn. Define

spec : 0n → (n,

spec(/) = sort−(,1, . . . , ,n)

using the eigenvalues of /. These maps give rise to

spec : 0 → (

in the natural way, where 0 := ⋃
n!2 0n.

Now we want to define complexity for quantum states. For this, we have to think about what a quantum state is
made of.

Definition 8.2. An n-ensemble for / ∈ 0n is a pair (x, |·〉) consisting of a classical state x ∈ (n and a list
|·〉 : {1, . . . , n} → Hn such that |i〉 is a unit vector for all 1" i"n and

/ =
n∑

i=1
xi · |i〉〈i|.

To illustrate, if we take x = spec(/) and |i〉 := |-i〉 in a spectral decomposition of /, we get an n-ensemble which
gives rise to /. The vectors in this particular ensemble are orthogonal, but in general, the vectors in an ensemble need
not be.
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So remembering that by complexity of a state we mean the amount of work required to resolve it, the complexity of
a quantum state / is

h(/) = inf{h(x) : (x, |·〉) is an n-ensemble for /}.
Now we come to a special case of a remarkable result: The classification theorem for ensembles. The direction (⇒) is
due to Uhlmann [15] while (⇐) is due to Nielsen [11].

Theorem 8.3. For all x ∈ (n, we can find normalized vectors {|-i〉}ni=1 such that

/ =
n∑

i=1
xi · |-i〉〈-i |

if and only if

x"spec(/),

where the continuous dcpo ((n, ") is majorization.

For domain theorists: In passing from density operators to the classical fragment of their generating ensembles we
obtain exactly the irreducible Scott closed subsets of ((n, "). Continuing with complexity now, the Scott continuity
of h on (n gives

h(/) = inf{h(x) : (x, |·〉) is an n-ensemble for /}
= inf{h(x) : x ∈ ↓spec(/)}
= h

(⊔ ↓spec(/)
)

= h(spec(/)).

We have thus derived the following:

Definition 8.4. The complexity of a quantum state h : 0 → [0,∞) is the map that causes

(
h ! [0,∞)

"
"

"
"

h

#

0

spec

$

to commute.

In the classical setting we had an operation ⊗ on processes and states; now we consider ⊗ in the quantum setting.
The tensor product of Hn and Hm is the Hilbert space

Hn ⊗Hm := Hnm.

In the appendix we give a clear account of ‘what’ and ‘why.’ If {-i}ni=1 is an orthonormal basis for Hn and {+j }mj=1 is

an orthonormal basis for Hm, then {-i ⊗ +j } is an orthonormal basis for Hn ⊗Hm, so any - ∈ Hn ⊗Hm is a linear
combination

- := ∑
i,j

cij(-i ⊗ +j ),

where the cij are complex. If / : Hn → Hn is the density operator for a system called 1, and # : Hm → Hm is the
density operator for a system called 2, then the density operator for these systems when considered together as forming
a new single system is

/⊗ # : Hn ⊗Hm → Hn ⊗Hm
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which is defined by

(/⊗ #)(x ⊗ y) = /x ⊗ #y

and then extended linearly.

Lemma 8.5. For /, # ∈ 0, we have spec(/⊗ #) = spec(/)⊗ spec(#).

Proof. Using the spectral decompositions of / and #, we can write

/⊗ # =
(

n∑
i=1

,i |-i〉〈-i |
)
⊗

(
m∑

j=1
!j |+j 〉〈+j |

)

=
n∑

i=1

m∑
j=1

,i!j (|-i〉〈-i |⊗ |+j 〉〈+j |)

using bilinearity. Now we plug in |-i〉 ⊗ |+j 〉 and get

(/⊗ #)(|-i〉 ⊗ |+j 〉) = ,i!j · (|-i〉 ⊗ |+j 〉)
using the pairwise orthogonality of the sets {|-i〉} and {|+j 〉}. Since {|-i〉⊗ |+j 〉} is an orthonormal basis for Hn⊗Hm,
we produce all nm eigenvalues of /⊗ # in this manner, which must be the set {,i!j }. #

To copy / ∈ 0 means to consider two identically prepared but physically distinct copies of the same system:

!/ := /⊗ /.

In programming terms: On machine A, we write a program p; on machine B, physically different from A, we write
program p. The two considered together yield a process that behaves like !p. The commutativity of

0
spec ! (

0

!
%

spec
! (

!
%

implied by spec(/⊗ #) = spec(/)⊗ spec(#) makes the next result clear.

Proposition 8.6. Let (D,⊗, !) be a symbolic domain with algebraic index k!2. Then the least fixed point of the Scott
continuous operator

$ : [0 → [0,∞)∗] → [0 → [0,∞)∗],

$(f ) = f !
2

,

on the set ↑(h + log k) is

fix($) = ⊔
n!0

$n(h + log k) = #,

where #/ = −tr(/ log /) is the von Neumann entropy.

Notice that if one accepts the definition of complexity h(/) in terms of ensembles, then exactly two steps allow us
to derive von Neumann entropy: (1) The classification theorem for ensembles, and (2) The calculation of a least fixed
point. Each step is domain theoretic.

Corollary 8.7. Let (D,⊗, !) be a symbolic domain with algebraic index k!2. Then there is a greatest function
f : 0 → [0,∞) which satisfies h!f and f (/⊗ /)!f (/) + f (/). It is von Neumann entropy.
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What we want to look closely at now is the meaning of this iteration, and we can do so using the ideas from the
classical setting. What makes this possible is the connection between orthogonality in the domain theoretic sense, and
orthogonality in Hilbert space. For this, we construct a map f̄ : P(D) → 0 whose canonical nature will be clear.

Let " = {1, . . . , n} be an alphabet of n symbols, , ∈ (n and (D, !) = ("∞, !) the domain of streams with
!i = ,i > 0 extended homomorphically. Let " → 0 be an injective map onto an orthonormal basis of Hn. We extend
it to f : "⊥ → Hn by choosing for ⊥ any other unit vector in Hn. For a process p ∈ P(D),

• The dimension of p is

dim(p) := |dom(p)|

the cardinality of its domain.
• The composition | · | ◦ p, where | · | is the length function on strings, is a vector of positive integers we denote by

|p|. The largest integer in |p| is

|p|+ := max
1" i "dim(p)

|pi |

while the smallest integer in this vector is

|p|− := min
1" i "dim(p)

|pi |.

• We define

d(p) := n|p|+ = |"||p|+

which will be the dimension of the space that operator f̄ (p) is defined on.

Here is an important and revealing relationship between these quantities.

Lemma 8.8. For p ∈ P(D), we always have d(p)!dim(p).

Proof. This is not a property of vectors of strings; it is a characteristic of processes. The usual measurement , on "∞,
given by ,i = 1/|"|, yields the same notion of process as ! because ker ! = ker ,. But using , and the orthogonality
of Im(p) we get

dim(p)∑
i=1

1
|"||p|+ "

dim(p)∑
i=1

1
|"||pi | "1

which then gives dim(p)" |"||p|+ . #

To define f̄ , we use the identical technique used earlier to map codes into domains in our study of "D and hD .
Given p ∈ P(D), to each pi , we associate a unit vector |-i〉 ∈ Hd(p) given by

|-i〉 :=
(

|pi |⊗
j=1

f (pi(j))

)

⊗
(

|p|+⊗
j=|pi |+1

f (⊥)

)

and then set

f̄ (p) :=
dim(p)∑
i=1

!pi

Z(p)
· |-i〉〈-i |.

Finally, let g∗ : P(D) → ( be the map which treats g(p) ∈ (dim(p) as a state in (d(p). Intuitively, g∗(p) is g(p) with
(d(p)− dim(p)) many zeroes adjoined.
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Theorem 8.9. The diagram

0
spec ! (

"
"

"
"

g∗

#

P(D)

f̄

$

commutes and f̄ (p ⊗ q) = f̄ (p)⊗ f̄ (q) whenever |p| is a constant vector.

Proof. First, each |-i〉 is the tensor of |p|+ different unit vectors in Hn. Then |-i〉 is a vector in Hd , where d := d(p).
Its norm is

||-i〉| =
(

|pi |∏
j=1

|f (pi(j))|
)

·
(

|p|+∏
j=|pi |+1

|f (⊥)|
)

= 1

using the fact that each vector in f ("⊥) is normalized. Then |-i〉〈-i | is a density operator on Hd . But this means that
f̄ (p) is a convex sum of density operators, and hence also a density operator on Hd . Now the important step: We show
that the domain theoretic orthogonality of Im(p) implies that {|-i〉} is pairwise orthogonal.

Let i 6= j. Then pi ⊥ pj . Thus, these two strings differ at some index k" min{|pi |, |pj |}, which means pi(k) 6=
pj (k). By the definition of f, these two symbols represent orthogonal vectors in Hn, so 〈f (pi(k))|f (pj (k))〉 = 0. We
have

〈-i |-j 〉 =
(

min{|pi |,|pj |}∏
m=1

〈f (pi(m))|f (pj (m))〉
)

· (other terms)

and since one value of m in the above product is k, we get 〈-i |-j 〉 = 0. Thus, {|-i〉} is a pairwise orthogonal subset
of Hd .

But this implies that each !pi/Z(p) is an eigenvalue of f̄ (p). Since f̄ (p) is a density operator, the sum of all its
eigenvalues must be one. Thus, f̄ (p) has exactly dim(p) nonzero eigenvalues, given by g(p) = !p/Z(p). Its other
d(p) − dim(p) eigenvalues must all be zero. By regarding g(p) ∈ (dim(p) as a state in (d(p), we get the vector
g∗(p) ∈ (d(p), which is the same as spec f̄ (p).

To prove f̄ (p ⊗ q) = f̄ (p)⊗ f̄ (q) when |p| is constant, write

f̄ (p) =
dim(p)∑
i=1

!pi

Z(p)
|-i〉〈-i | and f̄ (q) =

dim(q)∑
j=1

!qj

Z(q)
|+j 〉〈+j |

so that bilinearity and properties of the tensor on P(D) immediately give

f̄ (p)⊗ f̄ (q) =
dim(p)∑
i=1

dim(q)∑
j=1

!(pi ⊗ qj )

Z(p ⊗ q)
· |-i〉〈-i |⊗ |+j 〉〈+j |.

Now we write out

f̄ (p ⊗ q) =
dim(p)∑
i=1

dim(q)∑
j=1

!(pi ⊗ qj )

Z(p ⊗ q)
· |1ij〉〈1ij|.

The proof is finished if we can show that

|1ij〉〈1ij| = |-i〉〈-i |⊗ |+j 〉〈+j |.
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But when |p| is constant the calculation of |-i〉 never involves f (⊥),

|1ij〉=
(|pi |+|qj |⊗

k=1
f ((pi ⊗ qj )(k))

)

⊗
(

|p|++|q|+⊗
k=|pi |+|qj |+1

f (⊥)

)

=
(

|pi |⊗
k=1

f (pi(k))

)

⊗
( |qj |⊗

k=1
f (qj (k))

)

⊗
(

|q|+⊗
k=|qj |+1

f (⊥)

)

= |-i〉 ⊗ |+j 〉
so we have exactly |1ij〉〈1ij| = |-i〉〈-i |⊗ |+j 〉〈+j |. #

If the vector |p| is constant, it means that p represents a density operator. In general, a process p ∈ P(D) only partly
represents a density operator, so we use the state f (⊥) to ‘complete’ it to one. Now we can explain the iterates /n.
First, write / as

/ =
n∑

i=1
,i |-i〉〈-i |,

where {|-i〉} is an orthonormal basis for Hn, and we can assume all ,i > 0. This information implicitly defines f as

f : " → Hn :: i +→ |-i〉,

where " = {1, . . . , n} and the measurement ! on "∞ has !i = ,i extended homomorphically. For the process
q = (1, . . . , n) we have f̄ (q) = /. And since |q| is constant,

f̄ (qn) = f̄ (q)⊗ · · ·⊗ f̄ (q) = /n.

Thus, qn ∈ P(D) represents /n. But what physical process does q represent? It can represent the process of measuring
any observable of a system.

In more detail, let e be an observable with eigenstates |-i〉 and values {1, . . . , n}. Assume the probability of observing
value i is ,i . Then the density operator for the state of the system after a measurement of e is / = ∑

,i |-i〉〈-i |. Define
f (i) = |-i〉 and use the ,i to define !. Then f̄ (q) = / is the density operator for the state of the system after the
measurement of observable e.

Thus, we have implicitly associated an algorithm q to the measuring of observable e: If measuring e causes the
system to jump to eigenstate |-i〉, this corresponds computationally to an algorithm q which has taken path qi . Thus,
the act of measuring itself corresponds to supplying the algorithm q with an input; only when this input is supplied
does process q take the path qi , and then it does so with probability ,i .

So it is possible to think about the work done by an algorithm q associated to the measuring of an observable; in our
case, the work we expect q will do when the measurement of e is performed is

〈q〉(g(q)) = #g(q)− log Z(q)

= #g∗(q)− log Z(q)

= #(spec f̄ (q))− log Z(q)

= #(spec(/))− 0
= #/,

the von Neumann entropy of density operator /.
While the specifics of this section will not be needed in the next, the idea of associating an algorithm to various

physical processes in such a way that the algorithm attempts to ‘mimic’ the process is a good one to keep in mind.

9. Entanglement and algorithmic complexity

Consider the molecule from Example 7.2 whose state is represented by a process p. Now consider two molecules
p⊗p which are not interacting enough to worry about. Suppose that the first is in state pi and that the second molecule
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is in state pj . Then we would say that the state of the joint system, i.e., the two molecules considered together as a
single system, is pi ⊗ pj .

Conversely, we can ask, what does it mean to know the state of the joint system? That is simple, it means we know
some element pi ⊗ pj ∈ Im(p ⊗ p), from which we can immediately deduce that the first molecule is in state pi ,
while the second is in state pj . It is this latter bit that does not always work in quantum mechanics: We can know the
state of the joint system exactly without knowing the states of all its components exactly. Literally, the whole can be
more than the sum of its parts.

To put some mathematics to this, suppose we have two systems, named 1 and 2, with respective state spaces H1 and
H2 of the same dimension n, and that the joint system is in the pure state described by the unit vector

|-〉 ∈ H1 ⊗H2.

The state |-〉 is entangled if we can never write |-〉 = x ⊗ y for x ∈ H1 and y ∈ H2.

How can we tell when a state is entangled, and if it is entangled, how can we measure ‘how entangled’ it is? In
the bipartite setting that we are in, the Schmidt decomposition suggests a natural approach: For any normalized |-〉 in
H1 ⊗H2, there are nonnegative real numbers ,i !0 such that

|-〉 =
n∑

i=1
,i |-i〉 ⊗ |+i〉,

where {|-i〉} and {|+i〉} are orthonormal bases of H1 and H2, respectively. By applying the Pythagorean identity on
H1 ⊗H2,

||-〉|2 =
n∑

i=1
,2
i · ||-i〉 ⊗ |+i〉|2 =

n∑
i=1

,2
i · ||-i〉|2 · ||+i〉|2 =

n∑
i=1

,2
i · 1 · 1 =

n∑
i=1

,2
i ,

and since |-〉 is a unit vector,

n∑
i=1

,2
i = 1.

But more is true: This set of numbers is unique. The way to see this is to consider the information that |-〉 contains
about the individual systems. For instance, the information |-〉 contains about 1 is the density operator on H1 given by

/1 = tr2 |-〉〈-|,

where tr2 is the operator that takes operators on H1 ⊗H2 to operators on H1. Intuitively, tr2 removes the information
|-〉 contains about 2, thereby yielding the information |-〉 contains about 1. Formally, it is defined on basic elements
by

tr2 |x1〉〈x2|⊗ |y1〉〈y2| = 〈y1|y2〉 · |x1〉〈x2|

for |xi〉 ∈ H1 and |yi〉 ∈ H2, and then extended additively to all density operators. Thus, we can find the density
operator /1 for system 1 by first noting that

|-〉〈-| = ∑
1" i,j "n

,i,j · |-i〉〈-j |⊗ |+i〉〈+j |

and then calculating

/1 = tr2 |-〉〈-| = ∑
1" i,j "n

,i,j · 〈+i |+j 〉 · |-i〉〈-j |.

By the pairwise orthogonality of {|+i〉}, this simplifies to

/1 =
n∑

i=1
,2
i |-i〉〈-i |.
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Because {|-i〉} is an orthonormal basis for H1, we have spec(/1) = {,2
i }, and since the spectrum of an operator

is a unique set, the Schmidt coefficients in the decomposition of a normalized |-〉 ∈ H1 ⊗ H2 define a function
sc1 : H1 ⊗H2 → (n given by

sc1|-〉 = sort−(spec(tr2 |-〉〈-|)) = sort−(,2
1, . . . , ,

2
n).

Interestingly, the function sc2, which extracts the classical information |-〉 contains about subsystem 2, is equal to sc1.

Thus, we simply name them both by

sc|-〉 := sc1|-〉 = sc2|-〉.

However, were we studying multipartite entanglement we would expect minimally to consider maps sci , one for each
subsystem i.

Thus, |-〉 ∈ H1 ⊗H2 is not entangled iff (∃i) ,i = 1 iff #(sc|-〉) = 0, a wonderful application of the measurement
# : ((n, ") → [0,∞)∗. And generally speaking, we can see that it is reasonable to regard #(sc|-〉) as measuring the
extent to which |-〉 is entangled. Knowing the connection between # and " given in Theorem 5.1, we would expect
" to be relevant in the study of entanglement as well. And it is:

Theorem 9.1 (Nielsen [10]). State |-〉 can be converted into state |+〉 by means of local operations and classical
communication iff sc|-〉"sc|+〉.

This result characterizes exactly when it is possible to transform entanglement using local operations and classical
communication. Here is what this means: There are two spatially separated systems, one controlled by a party named 1,
the other controlled by party 2. To say they control their local systems means they are free to do anything they want to
them. The two parties are also allowed to communicate with one another using classical communication. This process
may be used to transform the state of the joint system from one pure state to another if and only if the spectrum of each
subsystem’s density operator moves up in the domain ((n, "). You will notice that the effect of this process is that it
reduces entanglement:

sc|-〉"sc|+〉 ⇒ #(sc|-〉)!#(sc|+〉).

Thus, corresponding to a measure of entanglement #, there is a process by which entanglement is reduced " . But
intuitively, in order to reduce entanglement, we must do algorithmic work.

Imagine an entangled pure state |-〉 of a system with several subsystems whose entanglement is successively reduced
to zero; write this as

lim
n→∞ pn|-〉 = |+〉.

The state |+〉 is pure and not entangled, so during this process the density operator / of any given subsystem must
be approaching a pure state, which means its entropy #/ eventually decreases to zero. With no loss of generality, we
can assume that #/ decreases with n. Now imagine an algorithm q which ‘mimics’ /, perhaps like the one we saw in
the last section. The classical state g∗(q) representing our knowledge about the output of q is mathematically equal to
spec(/). But since the entropy of / decreases with n, so too must the entropy of g∗(q), which means our knowledge of
the output of q is increasing. The only way our knowledge about the output of q can increase is if we do algorithmic
work. The result of this work is that we move to a new state of knowledge from which the expected complexity should
be less than it was originally. Thus, writing ent|-〉 for the amount of entanglement, we expect

d

dt
ent|-〉"0 ⇒ d

dt
〈q〉"0.

That is, in order to reduce entanglement, we must do algorithmic work. In the bipartite setting, the converse is
also possible:
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Proposition 9.2. |-〉 → |+〉 using local operations and classical communication iff

〈p〉(sc|-〉)!〈p〉(sc|+〉)
for every binary decision tree p : {1, . . . , n} → 2∞.

Proof. A process p ∈ P n(2∞) on the domain of binary streams gives rise to a binary tree ↓ Im(p) whose leaves
are Im(p). Conversely, a binary tree with n leaves yields a process p ∈ P n(2∞). Now the result follows from
Theorem 4.7. #

By Theorem 4.7, the last result can be stated for an arbitrary symbolic domain (D,⊗, !) in possession of a single
binary process. We have simply chosen to emphasize the case of binary trees. An interesting question is to ask if there
are other forms of entanglement transformation that are equivalent to simultaneously reducing the complexity of a class
of algorithms. But a more interesting question is to ask if there are forms which are not.

Denouement

To review some of what we have seen:

• Instead of using measurement to understand the calculation of a fixed point, we have used fixed points to understand
a measurement (#).

• Instead of using a partial order to understand computation, we have used computation to understand a partial order
(").

• We have shown how to use entropy in the study of algorithmic complexity; we have shown how to derive entropy
from basic concepts in computer science.

• Algorithms? Processes. Monotone functions? Antichains.

We have shown that information arises as the least fixed point of copying that is above complexity; this is one possible
formulation of the idea that information is complexity relative to the class of all conceivable processes. Another is
given by the universal limit, which we like to write as

lim
D∈"

(hD, "D) = (#, ").

The viewpoint we developed about these ideas in the classical setting applies to the quantum setting as well, and we have
proven this. This should be taken as evidence that one possible pragmatic definition of information is as an extension of
complexity. An illustration of the effectiveness of these simple ideas is the ease with which a rigorous connection between
entanglement transformation and algorithmic complexity was established. We have also unintentionally answered
questions like “How can physics benefit domain theory?” and “What is the quantum mechanical significance of the
Scott topology on (n?”

Ideas

We have introduced a number of new ideas in this paper. A strong desire to keep things as short and to the point as
possible has prevented examining them in any real detail.

• The order theoretic structure of ((n, " , #) is richer than we have indicated here, and the author believes this additional
structure has fundamental consequences for thermodynamics.

• There is a lot one can say about symbolic domains: Induction, integration, etc. The idea of algebra coexisting with
measurement is exciting.

• Domain theoretic orthogonality needs lots of attention in view of its importance for complexity in computer science
and physics; intuitively, a more general definition is possible which oddly enough leads to the exact same quantitative
theory. Why?

• Orthogonality will be useful for ordering P(D). The map p +→ 1− Z(p) is its natural measurement.
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• There should be a class of measurements which unifies the triangle inequality with the subadditivity needed for
orthogonal sets.

• Far more is possible with the inequalities relating h to #; a single inequality should give h = # on I[0, 1] and h"1+#
on 2∞.

• The universal limit should also hold over the class of 2 algebraic Scott domains (D, !).

• Define the complexity of a domain (D, !) to be the number

c(D) := hD(⊥).

Is there a domain constructor ∗ such that

c(D ∗ E) = c(D) · c(E),

where · is multiplication? If so, then notice that one should now be able to discuss polynomial time computability
by repeatedly multiplying copies of the lazy naturals.

As one would expect, the complexity h seems most effective on domains that you can draw using Hasse diagrams. Its
calculation should probably not be taken lightly.
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Appendix

A.1. A domain from 1903

Here is the proof that majorization is a domain; those unfamiliar with domains may find the appendix ‘Domain
theory’ at the end of this paper helpful.

Lemma A.1. (n is a dcpo with least element ⊥ := (1/n, . . . , 1/n).

Proof. Increasing sequences have suprema. To prove that all directed sets do, we use the usual trick from the study of
measurement, and demonstrate the existence of a strictly monotone map # : (n → [0,∞)∗ that preserves suprema of
increasing sequences. We can generate them at will as follows: The map

(n →
n∏

i=1
[0, 1] :: x +→ (s1x, . . . , snx)

is an order embedding between posets, so if fi is a measurement on [0, 1], then

#x =
n∑

i=1
fi(s

ix)

is such a map on (n. Now the proof is finished. #

Lemma A.2. Let ) : [0, 1] → (n be the straight line path from ⊥ to x,

)(t) = (1− t)⊥+ tx.
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Then it is Scott continuous and )(t)>x for each t < 1. Thus, (n is continuous.

Proof. The following equality is helpful in this proof:

si)(t) = i

n
(1− t) + t · six.

For monotonicity of ), if s < t , then

si)(s)"si)(t) ⇔ i

n
"six

which is clear using ⊥ 5 x. Scott continuity follows from Euclidean continuity.
To prove )(t)>x for t < 1, consider an increasing sequence (xk) ∈ (n with x 5 ⊔

xk. Because t < 1, si)(t) < six

for all 1" i < n; for i = n they are both equal to one. Since x 5 ⊔
xk , we have

si)(t) < six" lim
k→∞

si xk

for all 1" i < n. Since there are only finitely many i, there must exist some k with si)(t)"sixk for all 1" i < n. For
this same k, sn)(t) = snxk = 1, which gives )(t)"xk. This proves )(t)>x.

Using the Scott continuity of ), ↓↓x contains an increasing sequence with supremum x, and this means that ↓↓x itself
is directed with supremum x, which is the continuity of (n. #

Theorem A.3. (n is a continuous dcpo.

A.2. The tensor product

Given two Hilbert spaces H1 and H2, of any dimension whatsoever, their Hilbert space tensor product is the
completion of their algebraic tensor product. Specifically, we form the algebraic tensor product, then introduce an inner
product, and then complete it. First, the algebra, where we assume for simplicity that we have complex vector spaces.

Definition A.4. The algebraic tensor product of two vector spaces V and W is a pair (T ,⊗) where T is a vector space
and ⊗ : V ×W → T is a bilinear map such that

That is, for every bilinear f into any other vector space •, there is a unique linear f̄ that makes the diagram commute.
We write T = V ⊗W .

This construction is purely algebraic, usually encountered in the study of modules over rings. The elements of V ⊗W

are finite linear combinations of elements v⊗w where v ∈ V and w ∈ W . Given two Hilbert spaces H1 and H2, then,
we form the complex vector space H1 ⊗H2, and then introduce an inner product on it

〈1(x1 ⊗ y1)|3(x2 ⊗ y2)〉 = 1∗3〈x1|x2〉〈y1|y2〉

using the inner products from H1 and H2. This definition is extended linearly using the convention of quantum
mechanics, conjugate linearity in the first argument. Next, if V is a vector space with an inner product, then its metric
completion V̄ (with respect to the metric derived from the inner product) can be achieved by an inner product on V̄
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which extends the one on V . Thus, the metric completion of the inner product space (H1⊗H2, 〈·|·〉) is a Hilbert space
called the tensor product H1 ⊗H2.

If we have two Hilbert spaces of finite dimension m and n, respectively, their tensor product will have dimension
mn. However, complex/real Hilbert spaces are isomorphic iff they have the same dimension, which means that there is
a unitary surjective linear map between them which preserves the inner products. Thus, we can take the tensor product
of such spaces to be Hmn, where H is a one-dimensional complex Hilbert space.

A.3. Domain theory

Let (P,5) be a partially ordered set or poset [1]. A nonempty subset S ⊆ P is directed if (∀x, y ∈ S)(∃z ∈ S)

x, y 5 z. The supremum
⊔

S of S ⊆ P is the least of its upper bounds when it exists. A dcpo is a poset in which every
directed set has a supremum.

For elements x, y of a dcpo D, we write x>y iff for every directed subset S with y 5 ⊔
S, we have x 5 s, for some

s ∈ S.

Definition A.5. Let (D,5) be a dcpo. We set

• ↓↓x := {y ∈ D : y>x} and ↑↑x := {y ∈ D : x>y},
• ↓x := {y ∈ D : y 5 x} and ↑x := {y ∈ D : x 5 y},
and say D is continuous if ↓↓x is directed with supremum x for each x ∈ D.

The Scott topology on a continuous dcpo D has as a basis all sets of the form ↑↑x for x ∈ D. A function f : D → E

between domains is Scott continuous if it reflects Scott open sets. This is equivalent to saying that f is monotone,

(∀x, y ∈ D) x 5 y ⇒ f (x) 5 f (y),

and that it preserves directed suprema:

f
(⊔

S
)

= ⊔
f (S)

for all directed S ⊆ D. Like complete metric spaces, domains also have a result which guarantees the existence of
canonical fixed points.

Theorem A.6. If f : D → D is a Scott continuous map on a dcpo and there is an x ∈ D with x 5 f (x), then

fix(f ) := ⊔
n!0

f n(x)

is the least fixed point of f on the set ↑x.

Notice the case of the above result when a dcpo has a least element x = ⊥.

Definition A.7. A basis for a domain D is a subset B ⊆ D such that B ∩ ↓↓x is directed with supremum x, for all
x ∈ D.

Definition A.8. A domain is 2-continuous if it has a countable basis.

Definition A.9. An element x in a domain D is compact if x>x. The set of compact elements is denoted by K(D). A
domain D is algebraic if K(D) forms a basis for D. An algebraic domain is 2-algebraic if its set of compact elements
is countable.

Definition A.10. A continuous dcpo is compact if it is Scott compact and the intersection of any two Scott compact
upper sets is Scott compact.
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The terminology “compact” is based on the fact that the above condition is equivalent to compactness in the Lawson
topology.

Definition A.11. A domain is semantic if it is 2-algebraic and compact.

By carefully analyzing the behavior of a while loop which generates successively better approximations to some
desired ideal object, we become aware of the fact that our ability to distinguish between algorithms which progress
and those which do not depends in a subtle way on the relationship between the *-approximations around a point x,

!*(x) := {y ∈ D : y 5 x & *>!y},

where ! : D → E is a continuous map between domains, and our qualitative understanding expressed by5 . The study
of measurement connects this pragmatic desire with an element of the imagination: “information content.” Notice that
the former is real, meaning that it is specific and concrete in purpose; the latter is anyone’s guess.

Definition A.12. A continuous map ! : D → E between domains is said to measure the set X ⊆ D if for all x ∈ X

and all Scott open sets x ∈ U ⊆ D, we have x ∈ !*(x) ⊆ U , for some *>!x. We sometimes write ! → #X.

The terminology “induces the Scott topology near X” is used in [7], but we prefer to reserve it mostly for topological
discussions. One of the fundamental properties of measurements is strict monotonicity.

Proposition A.13. Let ! : D → E be a map that measures X ⊆ D. Then for all x ∈ D and y ∈ X, we have x 5 y

and !x = !y ⇒ x = y.

The case E = [0,∞)∗, the nonnegative reals in their opposite order, warrants special attention.

Definition A.14. A measurement is a continuous map ! : D → [0,∞)∗ that measures ker ! = {x ∈ D : !x = 0}.

By Proposition A.13, note that ker ! ⊆ max D = {x ∈ D : ↑x = {x}}. That is, an element with no uncertainty is
maximal in the information order.
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